US009460111B2

a2 United States Patent

Powell et al.

US 9,460,111 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(86)

87

(65)

(1)

(52)

METHOD AND APPARATUS FOR
VIRTUALIZATION OF A FILE SYSTEM,
DATA STORAGE SYSTEM FOR
VIRTUALIZATION OF A FILE SYSTEM, AND
FILE SERVER FOR USE IN A DATA
STORAGE SYSTEM

Applicant: Hitachi Data Systems Engineering

UK Limited, Berkshire (GB)
Inventors: Richard Powell, Maidenhead (GB);
James Gibbs, Wokingham (GB);
Timothy Warner, Farnborough (GB);
Zahra Tabaaloute, Southhampton (GB)
Assignee: Hitachi Data Systems Engineering
UK Limited, Berkshire (GB)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/373,060

PCT Filed: Jul. 2, 2013

PCT No.: PCT/EP2013/063910

§ 371 (e)(D),

(2) Date: Jul. 18, 2014

PCT Pub. No.: W02015/000502

PCT Pub. Date: Jan. 8, 2015

Prior Publication Data

US 2016/0110380 Al Apr. 21, 2016

Int. CL.

GO6F 17/30 (2006.01)

GO6F 3/06 (2006.01)

HO4L 29/06 (2006.01)

U.S. CL

CPC ... GO6F 17/30235 (2013.01); GOGF 3/0607

(2013.01); GOGF 3/067 (2013.01); GOGF

3/0647 (2013.01); GOGF 17/30123 (2013.01);
GO6F 17/30233 (2013.01); HO4L 67/42
(2013.01)
(58) Field of Classification Search
CPC ... GO6F 17/00; GO6F 17/30; GOG6F 17/30235
USPC 707/600-899
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,938,039 Bl 8/2005 Bober et al.
6,959,310 B2 10/2005 Eshel et al.
(Continued)
FOREIGN PATENT DOCUMENTS
EP 0 926 585 A2 6/1999
EP 1209 556 A2 5/2002
(Continued)

OTHER PUBLICATIONS

European Search Report received in corresponding European Appli-
cation No. 14176065 dated Oct. 23, 2014.

(Continued)

Primary Examiner — Isaac M Woo
(74) Attorney, Agent, or Firm — Mattingly & Malur, PC
(57) ABSTRACT

The method performed by the apparatus includes intercon-
necting a first file system managing unit 310 between the
plurality of client computers 100 and the second file system
managing unit 410, creating a first directory /root in a first
file system managed by the first file system managing unit
310, associating a first directory /root of the second file
system with the first directory /root of the first file system,
enabling on-demand virtualization of the second file system
by the first file system managing unit 310 based on client
requests received from the client computers 100 at the first
file system managing unit 310 and based on the association
between the first directory of the first file system and the first
directory of the second file system, and enabling indirect
client access to the second file system through the first file
system.

39 Claims, 23 Drawing Sheets

| Check job queue for next job

- Stont

| Obtain directory information job for a directory +/SAED7.

[Check virfualization management information table *\/SA"D}

t Request directory information for incomplets directory —i<~

Stwy /+ Receive diractary Information for incomplete directory

¢ ‘Write recelved directory Information for incomplete
S0 1 drectory to i jon table

Stons

Create virtualization job for each object \

Stoto /+ Create ditectory Information joh for each child dlrectord

SAo14

all child objects
observed?

US 9,460,111 B2

Page 2
(56) References Cited EP 2219 106 A2 8/2010
Jp 2005316708 A1 11/2005
U.S. PATENT DOCUMENTS Jp 2008040699 A2 2/2008
7,330,950 B2 2/2008 Matsunami et al.
7,457,822 B1 11/2008 Barrall et al.
7,587,436 B2 9/2009 Agetsuma et al. OTHER PUBLICATIONS
7,603,397 B1 10/2009 Hagerstrom et al.
2003/0182525 Al 9/2003 O’Connell et al. European Search Report received in corresponding European Appli-
%882;81%252 ﬁi * 2@882 ﬁTfaSQShtimla ~~~~~~~~ GOGF 17/30115 cation No. 14176056 dated Aug. 6, 2014,
orii et al. i 1) T »
2006/0212481 Al 9/2006 Stacey et al. ;‘2;83};;‘207“655 s Indir(l)—Tinux man page”, Dec. 6, 2007,
2008/0028169 Al 1/2008 Kaplan et al. S
2009/0006888 Al 1/2009 Bernhard et al. Anonymous: “CP(1)”, Dec. 12, 2000, XP002727656.
2009/0044046 Al 2/2009 Yamasaki Elwaywitac et al.: “Recursively symlink”, Oct. 28, 2012,
2009/0112947 Al 4/2009 Bourbonnais et al. XP002727657.
2009/0248762 Al 10/2009 Prahlad et al. s gt
2009/0271451 Al 10/2009 Young et al. Urbano, Randy, Oracle Database—Advanced Replication 10g
2009/0313311 Al 12/2009 Hoffmann et al. Release 1 (10.1), Part No. B10732-01; Dec. 2003; 342 pages.
2011/0078112 Al 3/2011 Takata et al. International Search Report received in International Application
2012/0150799 Al 6/2012 Matsuzawa No. PCT/EP2013/063910 dated Jan. 3, 2014.
FOREIGN PATENT DOCUMENTS
EP 2178005 A2 4/2010 * cited by examiner

US 9,460,111 B2

Sheet 1 of 23

Oct. 4, 2016

U.S. Patent

{
J
430

/

L
420

lllllllllllll ~4
2
XY
<L
b el
S L
i G B
o
g€ 2 =

Fig. 1B

,WD

200

7260

%20 Glo Y20 430

%0

Lo

A00
A00 ~y

Agory

U.S. Patent Oct. 4, 2016 Sheet 2 of 23 US 9,460,111 B2

Fig. 1C o0
wo o S
N00 L
/1(70/\% /\J /\v 450
00 Y
Ao
Fig. 1D
Lo 1w g b0 90
// / %
foon
A /7 |

A0t Q e

Yoo

U.S. Patent Oct. 4, 2016 Sheet 3 of 23 US 9,460,111 B2
Wa | |AMe |3 | A | (e | [| g
i I
j e S A8
a4, N
l l
Wa | (3426 | 2c | (M2l | 32e | [32f | (329
b
o,
Fig. 3 To A A W {16
VR, J
[A
' 4|
VIRTUALIZATION MANAGEMENT | |24 —
INFORMATION TABLE Wz |\ wzzzz2) |
77| |
V72778 |\ b2z | L
| P22\ N 2222771 |
VIRTUALIZATION MANAGEMENT | |622ZZ4| |C i | '
247) NFORMATION BACKUP UNIT ez | ="l | =
L 1 It _J
CRAWLING UNIT DATA BUFFER UNIT 1L wr
HL Yy
VIRTUALIZATION UNIT COMMUNICATION AR
244 b UNIT
7™M
t wek | [3%3
MIGRATION UNIT
%‘(S"/--/

U.S. Patent Oct. 4, 2016 Sheet 4 of 23 US 9,460,111 B2

Fig. 4
/root
/dir1 [dir2 file1 file2
/dir11 /dir12 /dir21 file3

/NN I

/dir111 filed filed file6 file7 file8

AN

file9 file10
Fig. 5A
froot
/dir1 /dir2 XLO1 XLOZ2
/dir11 /dir12 /dir21 XLO3

/NN I

/dir111 XLO4 XLOS XLO6 XLO7 XLO8

RN

XLO9 XLO10

U.S. Patent Oct. 4, 2016 Sheet 5 of 23 US 9,460,111 B2

Fig. 5B

/root

/N

/dir11 /dir12

/NN

[dir111 XLO4 XLOS XLO6

/N

XLO9 XLO10

Fig. 5C

/root

N

/dir21 XLO3

N

XLO7 XLO8

U.S. Patent

Fig. 6

Fig.7

Oct. 4, 2016

Sheet 6 of 23

A

Interconnect first storage apparatus

Create highest order directory

\

Y

Create directory information
job for /root directory

y

Enable background virtualization"|

Y

Enable on-demand virtualization

A

Enable client access to first
storage apparatus ﬂVS?

1% file server

US 9,460,111 B2

Block client access e SA

7
~ %

Create virtualization path /'\/5‘1

~~ SS’

~ 8

~ S

2" file server

Request /root information’wj

!
|
1
|
|
|
:l
. Provide /root information
li
]
|
i
]
i

-
/dir1 /dir2 file1 file2
Fig. 8
Name | Objecttype | ObjectID | Virtualization status | Object status
Iraot directory 001 virtualized incomplete
/dir1 directory 002 needs virtualization incomplete
fdir2 directory 003 needs virtualization incomplete
file1 file 004 needs virtualization needs migration
file2 file 005 needs virtualization needs migration

U.S. Patent Oct. 4, 2016 Sheet 7 of 23 US 9,460,111 B2
Fig. 9
/root
/dir1 /dir2 XLO1 XLO2
Fig. 10
Name | Objecttype | ObjectID | Virtualization status | Object status
root directory 001 virtualized complete
Idir1 directory 002 virtualized incomplete
/dir2 directory 003 virtualized incomplete
file1 file 004 virtualized needs migration
file2 file 005 virtualized needs migration
Fig.11

1% file server

2" file server

-

Request /dir1 information |
>

Provide /dir1 information

/dir11 /dir12

U.S. Patent Oct. 4, 2016 Sheet 8§ of 23 US 9,460,111 B2

Name | Objecttype | Object|D | Virtualization status | Object status
Iroot directory 001 virtualized complete
/dir1 directory 002 virtualized incomplete Wha,
/dir2 directory 003 virtualized incomplete /‘/
fite1 file 004 virtualized needs migration
file2 file 005 virtualized heeds migration
{dir11 directory 006 needs virtualization incomplete
/dir12 directory 007 needs virtualization | incomplete /\4;‘(,”,
Fig. 13
/root
/dir1 /dir2 XLO1 XLO2

/N

/dir11 /dir12

U.S. Patent Oct. 4, 2016 Sheet 9 of 23

Fig. 14

US 9,460,111 B2

Check job gueue for next job

/V.le 0’0/1

v

Obtain directory information job for a directory

o SADDL

v

Check virtualization management information table

[A

SdevY

Sados

d

directory
incomplete?

Check job queue for next job

YES '/vs“’"6

+

Request directory information for incomplete directory

€

T

Shwt

Receive directory information for incomplete directory

v

S400¢ A Vdirectory to virtualization management information table

Write received directory information for incomplete

v

SAo0% 1

Create virtualization job for each object

¥

S4040 Vv Create directory information job for each child directory

SA044
NO

all child objects
observed?

U.S. Patent

Oct. 4, 2016 Sheet 10 of 23
Fig. 15
Check job queue for next job A Si104
Y
Obtain virtualization job for an object AVSMOZ

directory

0
/JSM 4

A

Object is file
or directory?

¥

Create directory

Sd403
file

A

US 9,460,111 B2

SA142
/J

Y

Create eXternal Link Object

—+

Y

Update object status to
,needs migration”

i,

Create self-reference link ~ A$M0C
Calculate fake link count A
T N—Sa106
Write directory metadata Ny 10
Create parent directory link \ORY TG} 4

Decrement fake link count of
parent directory metadata

A~ (MeS

SAka0

Parent directory

complete?
/\/mM

Update object status of parent
directory to ,Complete”

St

Updarte virtualization
status to ,virtualized"

Y

Check job queue for next job

a2y

U.S. Patent Oct. 4, 2016 Sheet 11 of 23 US 9,460,111 B2

Fig. 16
Check job queue for next job A Stton
Obtain virtualization job for a file o SMo 2
v
Determine link count N of file A $ 4420
Saa24
NO N>17?
YES 42
Determine object ID m~ b
y
Check hidden index directory for associated subdirectory \/&MZ3

CA2q

associated
subdirectiory
exists?

NO

Create associated index subdirectory Remove one hard link from N SMf?L
+ associated index subdircetory

Create N-1 hard links in ¢
associated index subdirectory 7~ SM2

any hard
link left?

Remove assoclated index subdirectory

+ - Create eXternal Link Object <
in local target path location
1 - A1),

Updarte virtualization status to ,virtualized"
and object status to ,needs migration*

!

Check job queue for hext job w Saus

3

~

N SMA},SMW

U.S. Patent

Oct. 4, 2016

Sheet 12 of 23

US 9,460,111 B2

Fig. 17A /\/W’

XLO o M40 AL w A130
- hame - focal path location - time stamp
- remote path location - local object ID - link count
- remote object ID - local Inode Number - file aftributes
- remote Inode number - local file system 1D - length of file
- remote file system ID - local device ID
- remote device ID - object store length
Fig. 17B AT

Directory metadata
- Name - local path location - time stamp

- remote path location
- remote object ID
- remote inode Number

- local object ID
- local Inode Number
- local file system ID

- real link count
- fake link count
- attributes

- remote file system D - local device ID
- remote device ID
N\ Y i
/ / /
(L (
/240 A220 A2

U.S. Patent Oct. 4, 2016 Sheet 13 of 23 US 9,460,111 B2

Create /dir21 and XLO8

<enable access via XLO8

Fig.18
clilent 1% file server 2" file server

i request access to file8 f ?
| > E
i block access i |
|I< | |
i | look up /dir21 |
s | >~
E i response E
| -t }
: § look up file8 }
{ | >
|] response

| S

|
|
|
t
|
i
|
!
(
!
{
1
|
|
1
!
[
|
{
I
i
|
!

Fig. 19 [root
/dir1 [dir2
/dir11 /dir12 /dir21

N

XLO8

U.S. Patent Oct. 4, 2016 Sheet 14 of 23

Fig. 20

Receive access request for file

YES file

virtualized?

US 9,460,111 B2

all objects
virtualized?

C100%

Enable access to file via XLO to remote file

file 7
confirmed? Return error
Create virtualization job for each non-virtualized
object of the remote path A So0(

e

PN

U.S. Patent Oct. 4, 2016 Sheet 15 of 23

Fig. 21

S2402

YES object

virtualized?

US 9,460,111 B2

S04

Receive attribute information request for object !

object
confirmed?

Return error

Create virtualization job for each non-virtualized
object of the object path

)

n$ 2406

object
virtualized?

S2do?

Return object attributes

(S 2408

U.S. Patent Oct. 4, 2016 Sheet 16 of 23 US 9,460,111 B2

Fig. 22A

Receive access request for directory N 52204

YES S2202.

directory
virtualized?

% S0
Look up directory in remote path /
.04 V% $2008
directory 7
confirmed? Return error
Create virtualization job for each non-virtualized ¢
object of the remote path a S0

Y A~ SN0F

Create virtualization job for each child object o

all path objects
virtualized?

all child objects
virtualized?

Update object status to ,Complete”

Y

Enable access to directory ~A— 8224 4

U.S. Patent Oct. 4, 2016 Sheet 17 of 23 US 9,460,111 B2

Fig. 22B

Receive access request for directory - 2204

S0l

YES directory

virtualized?

o fues
Look up directory in remote path /

directory
confirmed?

Return error

Create virtualization job for each non-virtualized
object of the remote path qk, $2106
Create virtualization job for each child object A
SiLot

all path objects
virtualized?

32208

L Enable access to directory - 322 A4

U.S. Patent Oct. 4, 2016 Sheet 18 of 23 US 9,460,111 B2

Fig. 23

Enable virtualization managment table backup /'\/ 2304

{

Go to next virtualization managment table block

A~ 52307,

2
Table block j 302

contains any directory NO
indicated as Complete?

S2304
r

Check corresponding backup table block for each
directory indicated as Complete

/ $2308

NO

ny complete directo
indicated as Incomplete in
ackup table block?

$23006

//

Determine ali table biocks of child directories of
complete directories previously indicated Incomplete

Jy 30307

Backup all determined child directory table blocks

/

Backup current virtualization managment table block |<—

' L

L2208

U.S. Patent Oct. 4, 2016 Sheet 19 of 23 US 9,460,111 B2

Fig. 24 7
Name | Object type | ObjectID | Virtualization status | Object status

—Tm)ot directory 001 virtualized B complete

/dir1 directory 002 virtualized complete

/dir2 directory 003 virtualized complete /\/ 'S‘uq
file1 file 004 virtualized needs migration

file2 file 005 virtualized needs migration

/dir11 directory 0086 virtualized complete

{dir12 directory 007 virtualized complete 5‘@(6
/dir21 | directory 008 virtuallzed complete /‘/

file8 file 015 virtualized needs migration

/dir111 | directory 010 virtualized complete

filed4 file 011 virtualized needs migration

file9 file 016 virtualized needs migration) ¢
file10 file 014 virtualized needs migration

fileb file 012 virtualized needs migration

file file 013 virtualized needs migration

file3 file 009 virtualized needs migration

file7 file 014 virtualized needs migration ,\/ Z‘»‘é/[ol

U.S. Patent Oct. 4, 2016 Sheet 20 of 23 US 9,460,111 B2

g

Fig.25A
client 1% file server 2" file server
E Write request file8 i |
| - i
% Pass through via XLO8 !
f ' Write request file 8 :
| ! >
! | Acknowledge ':
| < E
| F Update XLO8 metadata |
f Acknowledge 5 |
- | s
Fig.25B
client 1% file server 2" file server
' Read request file8 i l
% > =
| Pass through via XLO8 |
i f Read request file 8 E
| : >
| | Provide data |
| » |
' Provide data ?, !

U.S. Patent Oct. 4, 2016 Sheet 21 of 23 US 9,460,111 B2

Fig.25C
client 1%t file server 2" file server
' Attribute request file8 | |
s > |
g Read attributes in XLO8 E
i Return attributes ' :
- f ‘
Fig.25D
client 1%t file server 2" file server

Delete request file8 |
>

Pass through via XLO8

Delete request file 8

|
|
|
|
|
|
]
1
|
|
i
|
|
|
|
|
[
I
1
L

l
§
]
i
|
§
|
|
{
1
|
|
|
|
|
l
|
\
1

Delete
file8
Acknowledge
g
Delete XLO8

Remove file8 from table

|

|

!

|

|

|

|

|

|

1

:

|

. |
f t

! '.
Acknowledge ; |
S !
2 |

U.S. Patent Oct. 4, 2016 Sheet 22 of 23 US 9,460,111 B2

Fig.25E

client 1% file server 2" file server

Create file request |
>

| Create XLO
| , Create file request
f i Create file
E | Acknowledge !
| - |
i Acknowledge : {
- | |
Fig.25F
client 1% file server 2" file server

| Change attributes of fiIeSh'i

Change attributes in XLOS8

Change attributes of file8h;

|
.

Change attributes
of file8

T

Acknowledge

A

Acknowledge

U.S. Patent Oct. 4, 2016 Sheet 23 of 23 US 9,460,111 B2

Fig.25G
client 1% file server 2" file server
| Create empty direc’tory:li
Create empty directory

Directory set to COMPLETE

1
|
|
i
i
|
|
:
|
!
|
I
!
|
!
|
|
!
|
T I
I
|
I
|
|

Create empty directory»

|
1
|
|
|
1
{
§
|
1
|
|
|
i
t
1
|
[
|
:
|
|
1
!

|

|

|

1

|
i
1

|

|

!

|

|

i
!
H
|
|
1

E Create empty
| directory
li Acknowledge !
Acknowledge 1.* |
& | |
Fig.25H
client 1% file server 2" file server

Rename directory ;
—>

Rename directory

Rename directory

I
I
I
|
I
|
i
|
i
|
{
|
]
|
i
|
|
I
|

directory

1
i
i
|
E Rename
|
|
|
1

Acknowledge

Acknowledge

A

US 9,460,111 B2

1
METHOD AND APPARATUS FOR
VIRTUALIZATION OF A FILE SYSTEM,
DATA STORAGE SYSTEM FOR
VIRTUALIZATION OF A FILE SYSTEM, AND
FILE SERVER FOR USE IN A DATA
STORAGE SYSTEM

The present invention relates to a method, and apparatus
and a data storage system for virtualization of a file system,
and a file server for use in such data storage system.

BACKGROUND

In the prior art, there are known data storage systems such
as e.g. described in connection with FIG. 1A below, in which
multiple client computers are connected via a communica-
tion network with one or more file server systems managing
one or more file systems for /O access by the client
computers.

At certain times, it may be desirable to exchange the one
or more (legacy) file servers with new file servers in order
to improve performance of the whole data storage system,
e.g., because the newer file servers may be adapted to
manage more file systems or larger file systems (including
enabling more data storage space and/or larger number of
file system objects), enable more efficient input/output (1/0)
performance, enable use of larger storage units or storage
units containing more efficient storage device technologies.
Still, it may be desirable to keep the already existing file
system(s) including file system structure (such as an existing
file tree structure) and user data (file content) thereof, while
it is, in principle, desirable to enable the users to access the
existing file system(s) without interruption or at least with
only a single interruption that is as short as possible. An
example of an apparatus and a method for a hard-ware based
file system is described in U.S. Pat. No. 7,457,822 B1, which
is herein incorporated by reference.

SUMMARY

As described in more detail below, embodiments of the
invention may be related to a data storage system, and parts
thereof, in which a (new) first file system managing unit is
interconnected between a plurality of client computers and
a (legacy) second file system managing unit which manages
one or more file systems accessible by the client computers.

After interconnecting the (new) first file system managing
unit, I/O access by the client computers to the one or more
file systems of the (legacy) second file system managing unit
may be achieved through the (new) first file system man-
aging unit. In a first phase referred to as virtualization, the
one or more file systems of the (legacy) second file system
managing unit may be represented by one or more virtual-
ized file systems of the (new) first file system managing unit,
the virtualized file systems being built incrementally during
the virtualization phase. In a second phase (which may
overlap with the virtualization phase), referred to migration,
user data of the one or more file systems of the (legacy)
second file system managing unit may be migrated to the
(new) first file system managing unit.

According to the invention, it is an object to provide a
method, and apparatus, a data storage system and a file
server for building and providing a virtualized file system
enabling indirect access to a second file system and enabling
client access to the second file system.

According to some embodiments, there may be provided
an apparatus for providing a virtualized file system enabling

10

20

25

40

45

50

60

65

2

indirect access to a second file system in a data storage
system comprising a plurality of client computers, a second
file system managing unit for managing the second file
system and enabling client access to the second file system,
and a first file system managing unit interconnected between
the plurality of client computers and the second file system
managing unit.

In some embodiments, the apparatus may comprise the
first file system managing unit adapted to create a first
directory in a first file system managed by the first file
system managing unit; associate a first directory of the
second file system with the first directory of the first file
system; enable on-demand virtualization of the second file
system by the first file system managing unit based on client
requests received from the client computers at the first file
system managing unit and based on the association between
the first directory of the first file system and the first
directory of the second file system; and/or enable indirect
client access to the second file system through the first file
system. This has the advantage that the client access to the
second file system can be enabled basically immediately
after interconnecting the first file system managing unit
indirectly through the first file system management unit.

In some embodiments, for executing on-demand virtual-
ization, the first file system managing unit may be adapted
to receive, from a client computer, an access request directed
to a second directory of the second file system in a second
path location with respect to the first directory of the second
file system; create, upon receiving the access request
directed to the second directory of the second file system, a
second directory in the first file system in the second path
location with respect to the first directory of the first file
system; and/or store metadata of the second directory of the
second file system in the first file system as metadata of the
second directory of the first file system.

In some embodiments, the first file system managing unit
may be adapted to, when the access request is a request for
modifying the second directory of the second file system,
modify the second directory of the first file system in
accordance with the received access request, and send the
access request to the second file system managing unit for
modifying the second directory of the second file system in
accordance with the received access request by the second
file system managing unit; and/or, when the access request
is a request for reading attributes of the second directory of
the second file system, return requested attributes of the
second directory of the second file system based on metadata
of the second directory of the first file system.

In some embodiments, for executing on-demand virtual-
ization, the first file system managing unit may be adapted
to receive, from a client computer, an access request directed
to a first file of the second file system in a first path location
with respect to the first directory of the second file system;
create, upon receiving the access request directed to the first
file of the second file system, a first external link object in
the first file system in the first path location with respect to
the first directory of the first file system; and/or store
metadata of the first file of the second file system in the first
file system as metadata of the first file together with the first
external link object of the first file system.

In some embodiments, the external link object may be a
file system object of the first file system representing the first
file of the second file system in the first file system and
enabling access to the first file of the second file system, the
first external link object including link data indicative at
least of a unique object ID of the first file in the second file

US 9,460,111 B2

3

system and the first path location with respect to the first
directory of the second file system.

In some embodiments, the first file system managing unit
may be adapted to, when the access request is a request for
modifying the first file of the second file system, send the
access request to the second file system managing unit on the
basis of the link data of the first external link object for
modifying the first file of the second file system in accor-
dance with the received access request by the second file
system managing unit; and/or, when the access request is a
request for reading attributes of the first file of the second file
system, return requested attributes of the first file of the
second file system based on metadata of the first external
link object.

In some embodiments, the first file system managing unit
may be adapted to enable automatic virtualization of the
second file system by the first file system managing unit
independent of client requests received from the client
computers at the first file system managing unit and based on
virtualization management information managed by the first
file system managing unit and based on the association
between the first directory of the first file system and the first
directory of the second file system, the virtualization man-
agement information being at least indicative of the first
directory existing in the second file system.

In some embodiments, for executing automatic virtual-
ization, the first file system managing unit may be adapted
to send, to the second file system managing unit, a directory
information request directed to a target directory of the
second file system indicated in the virtualization manage-
ment information for requesting information indicative of
child objects existing in the target directory of the second file
system; receive, from the second file system managing unit,
information indicative of child objects existing in the target
directory of the second file system in response to the
directory information request; and/or update the virtualiza-
tion management information based on the received infor-
mation indicative of child objects existing in the target
directory of the second file system.

In some embodiments, for executing automatic virtual-
ization, the first file system managing unit may be adapted
to create, for each child object existing in the target directory
of the second file system as indicated in the virtualization
management information, an associated file system object in
the first file system in a path location with respect to the first
directory of the first file system corresponding to the path
location of the associated child object with respect to the first
directory of the second file system.

In some embodiments, said sending the directory infor-
mation request is automatically repeated by the first file
system management unit for a plurality of target directories
of the second file system, and/or said creating, for each child
object existing in the target directory of the second file
system as indicated in the virtualization management infor-
mation, the associated file system object in the first file
system may be repeated by the first file system management
unit for each of the plurality of target directories.

In some embodiments, said repeatedly sending the direc-
tory information request for a plurality of target directories
of the second file system and said repeatedly creating the
associated file system object in the first file system for each
of'the child directories of the plural target directories may be
performed in parallel by the first file system management
unit.

In some embodiments, an execution rate per unit time of
said repeatedly sending the directory information request for
a plurality of target directories of the second file system may

10

15

20

25

30

35

40

45

50

55

60

4

be controlled by the first file system management unit based
on a storage occupancy of a buffer unit of the first file system
managing unit.

In some embodiments, an execution rate per unit time of
said repeatedly sending the directory information request for
a plurality of target directories of the second file system may
be controlled by the first file system management unit based
on a rate of availability rate of communication channels
between the first and second file system managing units.

In some embodiments, the created file system object may
be a third directory of the first file system when the asso-
ciated child object is a third directory of the second file
system.

In some embodiments, for executing automatic virtual-
ization, the first file system managing unit may be further
adapted to create a self-reference link in the created third
directory of the first file system, calculate a fake link count
for the created third directory of the first file system based
on the number of child directories of the associated third
directory in the second file system, and/or store the calcu-
lated fake link count in the metadata of the created third
directory of the first file system.

In some embodiments, the first file system management
unit may be adapted to decrement the fake link count stored
in the metadata of the third directory of the first file system
associated with the third directory in the second file system,
when automatically creating a child directory in the third
directory of the first file system being associated with a child
directory of the third directory of the second file system.

In some embodiments, the first file system management
unit may be further adapted to receive, from one of the client
computers, a request for reading a link count of the third
directory of the second file system; calculate the link count
of the third directory of the second file system by adding the
fake link count of the third directory of the first file system
and a real link count of the third directory of the first file
system; and/or send the calculated link count to the client
computer in response to the request.

In some embodiments, the created file system object may
be a second external link object when the respective child
object is a second file of the second file system, the second
external link object representing the second file of the
second file system in the first file system and enabling access
to the second file of the second file system, the second
external link object including link data indicative at least of
aunique object ID of the second file in the second file system
and a path location of the second file with respect to the first
directory of the second file system.

In some embodiments, the first file system management
unit may be further adapted to divide the virtualization
management information into a plurality of data blocks,
and/or repeatedly generate, for each data block, a backup
copy of each of the data blocks of the virtualization man-
agement information.

In some embodiments, a first data block of the plurality of
data blocks may include management data associated with a
fourth directory of the second file system, and one or more
second data blocks may include management data associated
with child directories of the fourth directory of the second
file system, wherein the first file system management unit
may be adapted to generate a backup copy of each of the one
or more second data blocks before generating a backup copy
of the first data block.

According to some embodiments of another aspect, there
may be provided a method for providing a virtualized file
system enabling indirect access to a second file system in a
data storage system comprising a plurality of client com-

US 9,460,111 B2

5

puters and a second file system managing unit for managing
the second file system and enabling client access to the
second file system.

The method may comprise interconnecting a first file
system managing unit between the plurality of client com-
puters and the second file system managing unit; creating a
first directory in a first file system managed by the first file
system managing unit; associating a first directory of the
second file system with the first directory of the first file
system; enabling on-demand virtualization of the second file
system by the first file system managing unit based on client
requests received from the client computers at the first file
system managing unit and based on the association between
the first directory of the first file system and the first
directory of the second file system; and/or enabling indirect
client access to the second file system through the first file
system.

On-demand virtualization in some embodiments may
comprise receiving, at the first file system managing unit, an
access request directed to a second directory of the second
file system in a second path location with respect to the first
directory of the second file system; creating, upon receiving
the access request directed to the second directory of the
second file system, a second directory in the first file system
in the second path location with respect to the first directory
of'the first file system; and/or storing metadata of the second
directory of the second file system in the first file system as
metadata of the second directory of the first file system.

In some embodiments, when the access request is a
request for modifying the second directory of the second file
system, the method may further comprise modifying the
second directory of the first file system in accordance with
the received access request, sending the access request to
Hitachi Data Systems Engineering UK Limited 7 the second
file system managing unit, and modifying the second direc-
tory of the second file system in accordance with the
received access request.

In some embodiments, when the access request is a
request for reading attributes of the second directory of the
second file system, the method may further comprise return-
ing requested attributes of the second directory of the second
file system based on metadata of the second directory of the
first file system.

On-demand virtualization in some embodiments may
comprise receiving, at the first file system managing unit, an
access request directed to a first file of the second file system
in a first path location with respect to the first directory of the
second file system; creating, upon receiving the access
request directed to the first file of the second file system, a
first external link object in the first file system in the first
path location with respect to the first directory of the first file
system; and/or storing metadata of the first file of the second
file system in the first file system as metadata of the first file
together with the first external link object of the first file
system.

The external link object may be a file system object of the
first file system representing the first file of the second file
system in the first file system and enabling access to the first
file of the second file system, the first external link object
preferably including link data indicative at least of a unique
object ID of the first file in the second file system and the
first path location with respect to the first directory of the
second file system.

In some embodiments, when the access request is a
request for modifying the first file of the second file system,
the method may further comprise sending the access request
to the second file system managing unit on the basis of the

10

15

20

25

30

35

40

45

50

55

60

65

6
link data of the first external link object, and modifying the
first file of the second file system in accordance with the
received access request.

In some embodiments, when the access request is a
request for reading attributes of the first file of the second file
system, the method may further comprise returning
requested attributes of the first file of the second file system
based on metadata of the first external link object.

In some embodiments, the method may further comprise
enabling automatic virtualization of the second file system
by the first file system managing unit independent of client
requests received from the client computers at the first file
system managing unit and/or based on virtualization man-
agement information managed by the first file system man-
aging unit and based on the association between the first
directory of the first file system and the first directory of the
second file system, the virtualization management informa-
tion being preferably at least indicative of the first directory
existing in the second file system.

Automatic virtualization in some embodiments may com-
prise sending, from the first file system managing unit to the
second file system managing unit, a directory information
request directed to a target directory of the second file
system indicated in the virtualization management informa-
tion for requesting information indicative of child objects
existing in the target directory of the second file system;
receiving, at the first file system managing unit from the
second file system managing unit, information indicative of
child objects existing in the target directory of the second file
system in response to the directory information request;
and/or updating the virtualization management information
based on the received information indicative of child objects
existing in the target directory of the second file system.

Automatic virtualization in some embodiments may fur-
ther comprise creating, for each child object existing in the
target directory of the second file system as indicated in the
virtualization management information, an associated file
system object in the first file system in a path location with
respect to the first directory of the first file system corre-
sponding to the path location of the associated child object
with respect to the first directory of the second file system.

In some embodiments, said sending the directory infor-
mation request is automatically repeated for a plurality of
target directories of the second file system, and/or said
creating, for each child object existing in the target directory
of the second file system as indicated in the virtualization
management information, the associated file system object
in the first file system is repeated for each of the plurality of
target directories.

In some embodiments, said repeatedly sending the direc-
tory information request for a plurality of target directories
of the second file system and said repeatedly creating the
associated file system object in the first file system for each
of'the child directories of the plural target directories may be
performed in parallel.

In some embodiments, an execution rate per unit time of
said repeatedly sending the directory information request for
a plurality of target directories of the second file system may
be controlled based on a storage occupancy of a buffer unit
of the first file system managing unit.

In some embodiments, an execution rate per unit time of
said repeatedly sending the directory information request for
a plurality of target directories of the second file system may
be controlled based on a rate of availability rate of commu-
nication channels between the first and second file system
managing units.

US 9,460,111 B2

7

In some embodiments, the created file system object may
be a third directory of the first file system when the asso-
ciated child object is a third directory of the second file
system.

Automatic virtualization in some embodiments may fur-
ther comprise creating a self-reference link in the created
third directory of the first file system, calculating a fake link
count for the created third directory of the first file system
based on the number of child directories of the associated
third directory in the second file system, and/or storing the
calculated fake link count in the metadata of the created third
directory of the first file system.

In some embodiments, the method may further comprise
decrementing the fake link count stored in the metadata of
the third directory of the first file system associated with the
third directory in the second file system, when automatically
creating a child directory in the third directory of the first file
system being associated with a child directory of the third
directory of the second file system.

In some embodiments, the method may further comprise
receiving, at the first file system managing unit from one of
the client computers, a request for reading a link count of the
third directory of the second file system; calculating, at the
first file system managing unit, the link count of the third
directory of the second file system by adding the fake link
count of the third directory of the first file system and a real
link count of the third directory of the first file system;
and/or sending the calculated link count to the client com-
puter in response to the request.

In some embodiments, the created file system object may
be a second external link object when the respective child
object is a second file of the second file system, the second
external link object preferably representing the second file of
the second file system in the first file system and enabling
access to the second file of the second file system, the second
external link object preferably including link data indicative
at least of a unique object ID of the second file in the second
file system and a path location of the second file with respect
to the first directory of the second file system.

In some embodiments, the method may further comprise
dividing the virtualization management information into a
plurality of data blocks, and repeatedly generating, for each
data block, a backup copy of each of the data blocks of the
virtualization management information.

In some embodiments, a first data block of the plurality of
data blocks includes management data associated with a
fourth directory of the second file system, and one or more
second data blocks include management data associated
with child directories of the fourth directory of the second
file system, wherein the method preferably further includes
generating a backup copy of each of the one or more second
data blocks before generating a backup copy of the first data
block.

According to another aspect, there may be provided an
apparatus for providing a virtualized file system enabling
indirect access to a second file system in a data storage
system comprising a plurality of client computers, a second
file system managing unit for managing the second file
system and enabling client access to the second file system,
and a first file system managing unit interconnected between
the plurality of client computers and the second file system
managing unit.

The apparatus may comprising the first file system man-
aging unit being adapted to create a first directory in a first
file system managed by the first file system managing unit;
associate a first directory of the second file system with the
first directory of the first file system; enable on-demand

10

15

20

25

30

35

40

45

50

55

60

65

8

virtualization of the second file system by the first file
system managing unit based on client requests received from
the client computers at the first file system managing unit
and based on the association between the first directory of
the first file system and the first directory of the second file
system; and/or enable indirect client access to the second file
system through the first file system.

In some embodiments, the first file system managing unit
of the apparatus may be further adapted to execute steps of
one or more of the aspects described above in connection
with some embodiments.

According to another aspect, there may be provided a data
storage system for providing a virtualized file system
enabling indirect access to a second file system in a data
storage system comprising a plurality of client computers, a
second file system managing unit for managing the second
file system and enabling client access to the second file
system, and a first file system managing unit interconnected
between the plurality of client computers and the second file
system managing unit, the first file system managing unit
being preferably adapted to create a first directory in a first
file system managed by the first file system managing unit;
associate a first directory of the second file system with the
first directory of the first file system; enable on-demand
virtualization of the second file system by the first file
system managing unit based on client requests received from
the client computers at the first file system managing unit
and based on the association between the first directory of
the first file system and the first directory of the second file
system; and/or enable indirect client access to the second file
system through the first file system.

In some embodiments, the first file system managing unit
of the data storage system may be further adapted to execute
steps of one or more of the aspects described above in
connection with some embodiments.

According to another aspect, there may be provided a file
system server for use in a data storage system according as
described above, preferably comprising a first file system
managing unit as described above in connection with some
embodiments.

According to another aspect, there may be provided a
computer program product comprising computer program
code means being configured to cause a processing unit of
a file system management unit in a data storage system to
execute the steps of one or more of the aspects described
above in connection with some embodiments.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1A shows an example of a data storage system.

FIG. 1B shows an example of the data storage system of
FIG. 1A having interconnected an additional storage appa-
ratus.

FIG. 1C shows another example of a data storage system.

FIG. 1D shows another example of a data storage system.

FIG. 2 exemplarily shows a schematic view of the struc-
ture of a file system management unit.

FIG. 3 exemplarily shows a schematic functional view of
a virtualization and migration unit.

FIG. 4 shows an example of a file system tree structure.

FIG. 5A shows an example of a virtualized file system tree
structure based on the tree structure of FIG. 4.

FIGS. 5B and 5C show examples of other virtualized file
system tree structures based on the tree structure of FIG. 4.

FIG. 6 shows an exemplary flow chart of a method for
virtualization initialization.

US 9,460,111 B2

9

FIG. 7 shows an illustration of information exchange for
automatic background virtualization.

FIG. 8 shows an example of a virtualization management
information table at a first point of time during virtualiza-
tion.

FIG. 9 shows an example of a partially virtualized file
system tree structure.

FIG. 10 shows an example of the virtualization manage-
ment information table at a second point of time during
virtualization.

FIG. 11 shows another illustration of information
exchange for automatic background virtualization.

FIG. 12 shows an example of the virtualization manage-
ment information table at a third point of time during
virtualization.

FIG. 13 shows an example of a partially virtualized file
system tree structure.

FIG. 14 shows an exemplary flow chart of automatic
background virtualization management.

FIG. 15 shows an exemplary flow chart of automatic
background virtualization.

FIG. 16 shows another exemplary flow chart of automatic
background migration.

FIG. 17A shows an exemplary schematic data structure of
an external link object for a virtualized file.

FIG. 17B shows an exemplary schematic data structure of
metadata for a virtualized directory.

FIG. 18 shows an illustration of information exchange for
on-demand virtualization.

FIG. 19 shows an example of a partially virtualized file
system tree structure after on-demand virtualization accord-
ing to FIG. 18.

FIG. 20 shows an exemplary flow chart of a method for
enabling user file access during virtualization.

FIG. 21 shows an exemplary flow chart of a method for
enabling attributes access during virtualization.

FIG. 22A shows an exemplary flow chart of a method for
enabling user directory access during virtualization.

FIG. 22B shows an exemplary flow chart of a method for
enabling user directory access during virtualization.

FIG. 23 shows an exemplary flow chart of a method for
virtualization management table backup.

FIG. 24 shows an example of the virtualization manage-
ment information table upon completion of virtualization of
the file system tree of FIG. 4.

FIG. 25A shows an illustration of information exchange
for write access to a virtualized file.

FIG. 25B shows an illustration of information exchange
for read access to a virtualized file.

FIG. 25C shows an illustration of information exchange
for attribute access to a virtualized file or directory.

FIG. 25D shows an illustration of information exchange
for deleting a virtualized file.

FIG. 25E shows an illustration of information exchange
for file creation.

FIG. 25F shows an illustration of information exchange
for changing attributes.

FIG. 25G shows an illustration of information exchange
for directory creation.

FIG. 25H shows an illustration of information exchange
for directory renaming.

DETAILED DESCRIPTION

In the following, preferred aspects and embodiments of
the present invention will be described in more detail with
reference to the accompanying figures. Same or similar

10

15

20

25

30

35

40

45

50

55

60

65

10

features in different drawings and embodiments are referred
to by similar reference numerals. It is to be understood that
the detailed description below relating to various preferred
aspects and preferred embodiments are not to be meant as
limiting the scope of the present invention.

FIG. 1A shows an example of a data storage system
comprising a plurality of client computers 100 (clients)
connected via a communication network 200 to a second
storage apparatus 400. The second storage apparatus 400
comprises a file system management unit 410 for managing
one or more file systems, a storage unit 420 for storing user
data and metadata of user data of the one or more file
systems managed by the storage unit 420, and a backup
storage unit 430 for performing backup of data stored in the
storage unit 420 upon backup request or automatically such
as e.g. periodically. The second storage apparatus 400 can be
realized as a single computing device or as a system of plural
devices connected to each other. For example, the file
system management unit 410 can be realized as a system of
one or more file system server computers connected to one
or more storage devices as storage units 420 and 430 of a
network attached storage (NAS).

The communication network 200 (as well as communi-
cation networks 500, 600, and 800 discussed below) may be
realized as a wired communication network (such as WAN,
LAN, local Fibre channel network, an Internet based net-
work, an Ethernet communication network or the like) or a
wireless communication network (such as WLAN), or any
combination thereof. An underlying communication proto-
col may be an Fibre Channel protocol or file based protocols
such as NFS-based protocols or SMB/CIFS-based protocols.

The clients 100 are adapted to access user data of the one
or more file systems managed by the file system manage-
ment unit 410 of the second storage apparatus 400 via the
communication network 200. Specifically, users can write
data to the file system, read data from the file system, create
files and directories in the file system, set or read attributes
of file system objects such as files and directories, modify
data of the file system, delete objects of the file system and
move file system objects, via each of the clients 100 con-
nected via the network 200 to the second storage apparatus
400 depending on user individual or user group individual
access policies (e.g. user access rights, user group access
rights, file system permissions etc.).

At certain times, it may be desirable to exchange the
second storage apparatus 400 with another newer file system
managing storage apparatus in order to improve perfor-
mance of the whole data storage system, e.g., because the
newer file system managing storage apparatus may be
adapted to manage more file systems or larger file systems
(including enabling more data storage space and/or larger
number of file system objects), enable more efficient input/
output (I/0O) performance, enable use of larger storage units
or storage units containing more efficient storage device
technologies. Still, it may be desirable to keep the already
existing file system(s) including file system structure (such
as an existing file tree structure) and user data (file content)
thereof, while it is, in principle, desirable to enable the users
to access the existing file system(s) without interruption or
at least with only a single interruption that is as short as
possible.

According to some preferred aspects of the invention, it is
an underlying idea that a newer first storage apparatus 300,
which shall be used instead of the older legacy second
storage apparatus 400 for managing the existing file
system(s), is interconnected between the accessing clients

US 9,460,111 B2

11

100 and the legacy second storage apparatus 400 as exem-
plarily illustrated in FIG. 1B, with only a single brief service
interruption.

FIG. 1B shows an example of the data storage system of
FIG. 1A having interconnected the additional first storage
apparatus 300 in between the communication network 200
and the second storage apparatus 400 according to preferred
aspects of the invention. The first storage apparatus 300
comprises a file system management unit 310 for managing
one or more file systems, a storage unit 320 for storing user
data and metadata of user data of the one or more file
systems managed by the storage unit 320, and a backup
storage unit 330 for performing backup of data stored in the
storage unit 320 upon backup request or automatically such
as e.g. periodically. The first storage apparatus 300 can be
realized as a single computing device or as a system of plural
devices connected to each other. For example, the file
system management unit 310 can be realized as a system of
one or more file system server computers connected to one
or more storage devices as storage units 320 and 330 of a
network attached storage (NAS).

Interconnecting the first storage apparatus 300 in between
the communication network 200 and the second storage
apparatus 400 requires only a single short interruption of file
system services, during which interruption the clients 100
are disconnected and cannot access the existing file
system(s) for a short period, i.e. clients 100 cannot read user
data, write user data, create new file system objects such as
files and directories or access file system object attributes.

After interconnecting the first storage apparatus 300 in
between the communication network 200 and the second
storage apparatus 400, the clients 100 remain disconnected
from the second storage system 400 and can, therefore, not
directly access the file system(s) managed by the second file
storage apparatus 400 but only can access the file system(s)
managed by the second storage apparatus 400 indirectly
through the first storage apparatus 300. According to pre-
ferred aspects, it is desirable that all user access will only be
addressed to the first storage apparatus 300 and no direct
connections to the second storage apparatus 400 exist.

First, after interconnecting the first storage apparatus 300,
the one or more file systems to be accessed by the users via
the clients 100 are still held on the second storage apparatus
400 (including the user data of files and directories for
organizing the files, and including metadata of the file
system objects) and the first storage apparatus 300 does not
hold any data of the existing file system(s).

In order to be able to handle all user access requests to the
file system(s) locally on the first storage apparatus 300 and
disconnect the second storage apparatus 400, all file system
data (including user data and file system metadata) may
eventually need to be migrated from the second storage
apparatus 400 to the first storage apparatus 300. However,
for large file systems containing a large number of directo-
ries and files, such data migration may take very long, and
if user access were disabled during migration of data until all
file system data (including user data and file system meta-
data) would exist on the first storage apparatus 300, this
would lead to disadvantageously long periods of undesirable
non-accessibility of the file system(s) by the clients 100.

For minimizing the period of undesirable non-accessibil-
ity of the file system(s), the first storage system 300 is
adapted to enable indirect user access to the file system(s)
managed by the second storage apparatus 400 immediately
after interconnecting the first storage apparatus 300.

Then, in a first phase after interconnecting the first storage
apparatus 300, referred to as “Virtualization” in the follow-

5

10

15

20

25

30

35

40

45

50

55

60

65

12

ing, the first storage apparatus 300 performs virtualization of
the file system tree(s) of the file system(s) in which the file
system tree(s) of the file system(s) which exist on the second
storage system 400 is/are virtually created on the first
storage apparatus 300 without actually migrating user data
stored on the storage unit 420 of the second storage appa-
ratus.

In a second phase, referred to “Migration” in the follow-
ing, the actual user data including the actual data contents of
files and the like will be transferred from the second storage
apparatus 400 to the first storage apparatus 300.

Upon completion of both of the virtualization phase and
the migration phase, the first storage apparatus 300 will be
able to handle locally the existing file system(s), which may
very likely have been changed in the meantime due to
ongoing user access to the file system(s) during the virtu-
alization and migration phases, and the second storage
apparatus 400 can be disconnected completely thereafter.

During both of the virtualization phase and the migration
phase, however, the second storage apparatus 400 will need
to remain accessible by the first storage apparatus 300.

While the virtualization phase and the migration phase
will be described in more detail below with respect to some
preferred aspects as distinct phases, in which data migration
is not started until completion of the virtualization phase, it
is to be understood that the present invention is not limited
to such configuration, and that these phases can also overlap
in a timely manner in that migration of file data content of
files of already virtualized portions of the file system(s) may
be performed already while virtualization is still ongoing for
other portions of the file system(s).

When exemplarily considering the virtualization phase
and the migration phase as distinct subsequently performed
operational phases, no user data (i.e. contents of files) will
exist on the first storage system 300 (e.g. stored in the
storage unit 320) because during the virtualization phase, the
first file system management unit 310 will build a virtualized
file tree structure of the file system(s) managed by the
second file system management unit 410 in that the first file
system management unit 310 will create an external link
object stored by the storage unit 320 for each file that exists
in the file system(s) of the second storage apparatus 400.

The external link objects will be file system objects of the
file system(s) managed by the first file system management
unit 310, each external link object enabling access to the
corresponding file of the file system(s) managed by the
second file system management unit 410 as long as the
actual user data of the file (i.e. the file content itself) has not
been migrated to the storage unit 320 of the first storage
apparatus 300.

The details of user access to files of the file system(s)
existing on the second storage apparatus 400 through exter-
nal link objects existing on the first storage apparatus 300
will be described below.

While the connection of the first and second storage
apparatuses 300 and 400 in all of the configurations of FIGS.
1B to 1D below may be realized in various ways, e.g. similar
to the communication network 200 discussed above, and it
may be particularly desirable to provide a Fibre channel
connection having plural Fibre channels allowing parallel
communication in the different plural Fibre channels. Fur-
thermore, it may be desirable to use a file-based communi-
cation protocol such as e.g. FTP-based protocols, NFS-
based protocols (e.g. NFSv3 or NFSv4) or SMB/CIFS-based
protocols, or the like.

FIG. 1C shows another example of a data storage system
having interconnected an additional first storage apparatus

US 9,460,111 B2

13

300 in between the communication network 200 and another
communication network 500, which is connected to plural
second storage apparatuses 400. That is, the difference to the
data storage system as shown in FIG. 1B is that the first
storage apparatus 300 can be used to be exchanged with a
plurality of previously existing legacy storage apparatuses
400, each managing one or more file system(s) to be
accessed by the clients 100. The first storage apparatus 300
is adapted to perform virtualization and migration of the file
systems managed by the plural legacy storage apparatuses
400.

Upon completion of both of the virtualization phase and
the migration phase, the first storage apparatus 300 will be
able to handle locally the existing file systems, which may
very likely have been changed in the meantime due to
ongoing user access to the file system(s) during the virtu-
alization and migration phases, and one or more or all of the
second storage apparatuses 400 can be disconnected com-
pletely thereafter. During both of the virtualization phase
and the migration phase, however, the second storage appa-
ratuses 400 will need to remain accessible by the first storage
apparatus 300.

In the example of FIG. 1C, it becomes apparent that it
may even be advantageous in some cases to only perform
virtualization of file systems by the first storage apparatus
300 without any subsequent migration phase. For example,
after completion of the virtualization of all file systems
managed by the legacy storage apparatuses 400, while the
actual user data (file content) of the file systems will remain
to be stored only on the storage units of the legacy storage
apparatuses 400, all file systems of the plural legacy storage
apparatuses 400 can be accessed by the clients 100 through
the virtualized file systems managed by the first storage
apparatus 300 as a single access point.

FIG. 1D shows another example of a data storage system.
Again, clients 100 are connected via a communication
network 200 to the first storage apparatus 300, and the first
storage apparatus 300 is connected via another communi-
cation network 500 to the second (legacy) storage apparatus
300. In addition, the first storage apparatus 300 is connected
via yet another communication network 800 to a remote
storage apparatus 900 while the second storage apparatus
400 is connected via yet another communication network
600 to another remote storage apparatus 700.

Such configuration also allows remote data replication, in
which user data stored on the storage unit 320 of the first
storage apparatus 300 can be remote replicated via the
communication network 800 to a storage unit of the first
remote storage apparatus 900 and user data stored on the
storage unit 420 of the second storage apparatus 400 can be
remote replicated via the communication network 600 to a
storage unit of the second remote storage apparatus 700. Of
course, remote replication of data via the networks 800 and
600 can be performed synchronously or asynchronously.

In principle, for a large number of legacy data storage
systems, there will exist a configuration having a second
storage apparatus 400 at a first site and a remote storage
apparatus 700 for synchronous or asynchronous remote
replication of user data of the file system(s) managed by the
second storage apparatus 400. After interconnecting the first
storage apparatus 300 as described above in connection with
FIG. 1B, the first storage apparatus 300 will perform virtu-
alization of the file system(s) managed by the second storage
apparatus 400 but will not actually migrate user data until
the start of the migration phase.

According to an exemplary embodiment, during virtual-
ization phase without migration, all user access to the file

20

40

45

65

14

system(s) by the clients 100 will be passed through to the
second storage apparatus 400, including all data modifying
user requests such as write access, attribute changing user
access, creation of new file and directories, renaming opera-
tions etc., and the second storage system 400 will continue
to manage the current (canonical) version of the file
system(s). In such embodiments, it will not be necessary to
perform data replication from the first storage apparatus 300
to the remote storage apparatus 900 as long as all data
modifying user access to the file system(s) by the clients 100
will be passed through to the second storage apparatus 400,
because the canonical data version of the file system(s) will
be held completely on the second storage apparatus 400 and
be replicated synchronously or asynchronously to the stor-
age apparatus 900, and the remote storage apparatus 900 can
be connected later.

However, in some other embodiments in which migration
is started already during (or after virtualization), and modi-
fying user access is not passed through anymore to the
second storage apparatus 400 for file system objects which
have been fully migrated and are fully held on the first
storage apparatus 300, and/or for creation of new files and/or
new directories being only performed in the file system(s)
being managed by the first storage apparatus 300, i.e. when
the file systems may start to differ, additional data replication
to the remote storage apparatus 900 may become desirable
at least for file system objects which have been fully
migrated and are fully held on the first storage apparatus 300
and/or for newly created files and/or newly created directo-
ries.

Similarly, in all of the above configurations, for backup of
data, it will not be necessary to perform data backup from
the storage unit 320 of the first storage apparatus 300 to the
backup storage unit 330 as long as all data modifying user
access to the file system(s) by the clients 100 will be passed
through to the second storage apparatus 400, when the still
canonical version of the file system(s) will be held still on
the second storage apparatus 400, and backup of the canoni-
cal version will be performed from the storage unit 420 of
the second storage apparatus 400 to the backup storage unit
430.

However, in some other embodiments in which migration
is started already during (or after virtualization), and modi-
fying user access is not passed through anymore to the
second storage apparatus 400 for file system objects which
have been fully migrated and are fully held on the first
storage apparatus 300, and/or for creation of new files and/or
new directories being only performed in the file system(s)
being managed by the first storage apparatus 300, i.e. when
the file systems may start to differ, additional data backup to
the remote storage unit 330 may become desirable at least
for file system objects which have been fully migrated and
are fully held on the first storage apparatus 300 and/or for
newly created files and/or newly created directories.

FIG. 2 exemplarily shows a schematic view of the struc-
ture of the file system management unit 310. The file system
management unit 310 comprises a host interface unit 311
comprising a plurality of host interfaces 311a to 311g for
connection to plural host devices (such as client computers
100) via the network 200 and a storage interface unit 312
comprising a plurality of storage interfaces 312a to 312¢g for
connection to plural storage devices of the storage units 320
and 330. In addition, the file system management unit 310
comprises a processing unit 313 comprising one or more
central processing units, a memory unit 314 for temporarily

US 9,460,111 B2

15

storing data used for processing including management data,
and a storage device 315 for storing application data and
management data.

FIG. 3 exemplarily shows a schematic functional view of
a virtualization and migration unit 340 of the file system
management unit 310, which can be realized by hardware,
software, or a combination thereof.

The virtualization and migration unit 340 comprises a
virtualization management information table 341 for man-
aging virtualization management data and migration man-
agement data (stored in the memory unit 314 and/or the
storage device 315) and a virtualization management infor-
mation backup unit 342 for performing backup of virtual-
ization management data and migration management data
(to the storage device 315 and/or to storage units 320 and/or
330).

For communication purposes, the virtualization and
migration unit 340 comprises a communication unit 348
having a client communication unit 348A for receiving
access requests from clients 100 and for responding to
access requests from clients 100 and a file system commu-
nication unit 348B for issuing access requests to the file
system management unit 410 of the second storage appara-
tus 400 and for receiving responses from the file system
management unit 410 of the second storage apparatus 400.

For performing virtualization and migration, the virtual-
ization and migration unit 340 comprises a crawling unit 343
for automatically crawling (observing) the file tree structure
of'the file system(s) managed by the file system management
unit 410 of the second storage apparatus 400, and for
creating virtualization jobs for instructing virtualization of
file system objects discovered in the file system(s) managed
by the file system management unit 410 of the second
storage apparatus 400.

The virtualization and migration unit 340 further com-
prises a virtualization unit 344 for executing virtualization
jobs for virtualizing file system objects discovered by the
crawling unit 343, and for creating migration jobs for
instructing migration of virtualized file system objects, and
a migration unit 345 for executing migration jobs for migrat-
ing file system objects virtualized by the virtualization unit
344.

The virtualization and migration unit 340 further com-
prises a plurality of job queues 346A, 346B and 346C for
subsequently storing jobs for file system crawling, file
system object virtualization, and for file system object
migration.

For example, the first job queue 346 A may hold directory
information jobs, the second job queue 346B may hold
virtualization jobs and the third job queue 346C may hold
migration jobs. That is, the virtualization and migration may
be performed in a multi-threaded and/or parallelized manner
in that different units are provided for file system crawling
(crawling unit 343) based on jobs held in the job queue
346A, for file system object virtualization (virtualization
unit 344) based on jobs held in the job queue 346B, and for
file system object migration (migration unit 345) based on
jobs held in the job queue 346C.

The above-mentioned units may be multi-threaded in that
the crawling unit 343 may be adapted to execute plural
crawling jobs (e.g. directory information jobs as discussed
further below) taken from the job queue 346A in parallel, the
virtualization unit 344 may be adapted to execute plural
virtualization jobs taken from the job queue 346B in parallel,
and the migration unit 345 may be adapted to execute plural
migration jobs taken from the job queue 346C in parallel.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

The present invention is, however, not limited to the use
of three queues as described above, and there may be
provided plural job queues for each of directory information
jobs, virtualization jobs and migration jobs, or less than
three queues, e.g. in that one queue is provided for all of
directory information jobs, virtualization jobs and migration
jobs. In the latter case of only one queue, the crawling unit
343, the virtualization unit 344, and the migration unit 345
may be realized as a single multi-threaded unit being
adapted to execute a plurality of jobs taken from the single
job queue, and adding all newly created jobs (including
directory information jobs, virtualization jobs and migration
jobs to the same queue).

A “directory information job” is a job associated with a
certain directory of the file system(s) managed by the file
system management unit 410 of the second storage appara-
tus 400 which has been discovered by the crawling unit 343,
the “directory information job” instructing the crawling unit
343 to observe the file system objects (including subdirec-
tories and files) in the certain directory of the file system(s)
managed by the file system management unit 410 of the
second storage apparatus 400.

A “virtualization job” is a job associated with a certain file
system object (such as a file or directory) of the file
system(s) managed by the file system management unit 410
of the second storage apparatus 400 which has been discov-
ered by the crawling unit 343, the “virtualization job”
instructing the virtualization unit 344 to virtualize the certain
file system object on the first storage apparatus 300.

Basically, virtualization of a directory discovered by the
crawling unit 343 means that a corresponding directory
(having the same name) will be created in the file system(s)
managed by the first file system management unit 310, while
virtualization of a file or similar object (such as a hard linked
file) discovered by the crawling unit 343 means that a virtual
object, referred to as external link object (abbreviated as
XLO in the following), will be created in the directory of the
file system(s) managed by the first file system management
unit 310 corresponding to the directory of the file system(s)
managed by the second file system management unit 410
having the corresponding file.

An “external link object” is an object existing in the file
system(s) managed by the first file system management unit
310 being associated with a file or similar object (such as a
hard linked file). An “external link object” does not store any
actual user data of the corresponding file but includes an
external reference to the corresponding file in the file
system(s) managed by the second file system management
unit 410 such that the “external link object” of the file
system(s) managed by the first file system management unit
310 represents the corresponding file of the file system(s)
managed by second file system management unit 410 in the
file system(s) managed by the first file system management
unit 310 and allows access to the corresponding file.

An “external link object” may at least comprise informa-
tion on a remote object ID used for the corresponding file in
the file system(s) managed by the second file system man-
agement unit 410 and information on a remote path of the
file in the file system(s) managed by the second file system
management unit 410.

A “migration job” is a job associated with a certain file or
similar object (such as a hard linked file) of the file system(s)
managed by the file system management unit 410 of the
second storage apparatus 400 which has been virtualized by
the virtualization unit 344, the “migration job” instructing
the migration unit 345 to migrate the certain file or similar
object to the first storage apparatus 300. That is, by execut-

US 9,460,111 B2

17

ing the migration job” instructing the migration unit 345 to
migrate the certain file, the actual user data as content of the
file is transferred to the first storage apparatus 300 to be
stored in the storage unit 320.

In case jobs are created while the job queues become
occupied with jobs, there is provided a buffer unit 347 for
temporarily storing directory information jobs, virtualiza-
tion jobs and migration jobs when one or more of the job
queues 346A to 346C are occupied. When jobs are held by
the buffer unit 347, the jobs will be added to the respective
job queues once another job is executed and removed from
the job queues.

Further exemplary details in connection with terms “vir-
tualization”, “migration”, “external link object”, “directory
information job”, “virtualization job”, and “migration job”
will become apparent in the discussion of the more detailed
description and examples below.

FIG. 4 shows an example of a file system tree structure of
a file system as exemplarily managed by the second file
system management unit 410 of FIGS. 1A and 1B. Specifi-
cally, it is exemplarily assumed that the file system managed
by the second file system management unit 410 and stored
on the storage unit 420 of FIG. 1A has the structure of FIG.
4 at the time of disconnecting the second storage apparatus
400 and interconnecting the first storage apparatus 300
before start of virtualization of the file system on the first
storage apparatus 300 to be managed by the first file system
management unit 310.

The exemplary file system of FIG. 4 has a highest order
directory /root and plural subdirectories. Specifically, the
child directories /dirl and /dir2 exist in the /root directory in
addition to files “filel” and “file2”. That is, the /root direc-
tory represents the parent directory of the child directories
/dirl and /dir2. The directory /dirl has child directories
/dirll and /dirl2 and the directory /dir2 has one child
directory /dir21 and the file “file3”. In the child directory
/dir111 of directory /dirll, there exist files “file9” and
“file10”. Further, a file “file4” is stored in directory /dirll,
while files “file5” and “file6” exist in the directory /dir12.
Finally, the directory /dir21 has files “file7” and “file8”.

Once the first storage apparatus 300 is interconnected
between the clients 100 and the second storage apparatus
400 as e.g. shown in FIG. 1B, 1C or 1D, virtualization of the
file system managed by the second file system management
unit 410 and stored on the storage unit 420 of FIG. 1A can
be initiated as soon as an initial virtualization path is created,
which virtualization path associates one newly created direc-
tory in the file system managed by the first file system
management unit 310 of the first storage apparatus 300 (e.g.
a highest order directory) with a highest order directory of
the portion of the file system managed by the second file
system management unit 410 of the second storage appara-
tus 400 to be virtualized and/or migrated.

For example, in case no previous file system exists on the
first storage apparatus 300, a new highest order directory
/root can be created in the file system managed by the first
file system management unit 310 of the first storage appa-
ratus 300 and be associated by a newly established virtual-
ization path with the highest order directory /root of the file
system managed by the second file system management unit
410 of the second storage apparatus 400, resulting in virtu-
alization of the tree structure of all file system objects having
a lower order than the /root directory.

FIG. 5A shows an example of a virtualized file system tree
structure based on the tree structure of FIG. 4 in which the
highest order directory /root of the file system managed by
the first file system management unit 310 is associated with

10

15

20

25

30

35

40

45

50

55

60

65

18

the highest order directory /root of the file system managed
by the second file system management unit 410 according to
a first virtualization path <storage apparatus 300>:/root-
><storage apparatus 400>:/root.

After complete virtualization of the file system of the
second file system management unit 410 according to the
first virtualization path, the first file system management unit
410 will manage a file system having a tree structure
according to FIG. 5A in which each of the directories /dirl,
/dir2, /dirll, /dirl12, /dir21 and /dirl1l of the file system
managed by the second file system management unit 410
will have been created also in the file system as managed by
the first file system management unit 310, having the same
tree structure in that directories /dirl and /dir2 are created as
child directories of the highest order directory /root, direc-
tories /dirl1 and /dir12 are created as child directories of the
directory /dirl and so on.

However, regarding the files (and similar objects such as
hard linked files), the file system managed by the first file
system management unit 310 in the first storage apparatus
300 will not have the actual files after virtualization but have
a respective external link object XLLO for each file of the file
system managed by the second file system management unit
410 in the second storage apparatus 300.

Accordingly, after virtualization being completed, the
external link objects XL.O1, XLO2, XLO3, X[L.O4, XLLOS5,
XLO6, XLO7, XLO8, XL0O9, and XL.O10 will exist in the
file system managed by the first file system management unit
310 in the first storage apparatus 300 instead of the respec-
tive files filel, file2, file3, filed, file5, file6, file7, file8, file9,
and filel0 of the file system managed by the second file
system management unit 410 in the second storage appara-
tus 400. It is to be noted that the external link objects in the
first file system will be presented as files to the clients, i.e.
the clients will not be able to see the external link objects in
the first file system but will see the actual file names, e.g.,
“filel”, “file2”, “file3”, “file4”, “file5”, “file6”, “file7”,
“file8”, “file9”, and “file10”. Each of the respective external
link objects will exist in the directory of the file system
managed by the first file system management unit 310 in the
first storage apparatus 300 that corresponds to the respective
directory of the file system managed by the second file
system management unit 410 in the second storage appara-
tus 400 having the respective file.

For example, while filel0 exists in the remote path
/root/dir1/dir11/dir111/file10 in the file system managed by
the second file system management unit 410 in the second
storage apparatus 400, the corresponding external link
object XLO10 exists in the corresponding local path /root/
dir1/dir11/dir111/X1.O10 in the first file system management
unit 310 of the first storage apparatus 300, and XL.O10
represents filel0 and allows external access to file10 when
a user attempts to access file 10 in the file system at the first
storage apparatus 300 by means of an access request. That
is, preferably, the local paths names will be the same as the
remote paths, and from the viewpoint of the clients, the
virtualized first file system will be appearing to the clients
undistinguishable from the second file system.

FIG. 5B shows an example of another virtualized file
system tree structure based on the tree structure of FIG. 4 in
accordance with another possible virtualization path. For
example, in a situation in which current users only access
files and directories existing below /dirl while filel, file2
and all objects existing below directory /dir2 are not
accessed anymore, another virtualization path may be set
such as <storage apparatus 300>:/root-><storage apparatus

US 9,460,111 B2

19

400>:/root/dirl resulting in the virtualized tree structure of
FIG. 5A in which only objects below directory /dirl can be
accessed after virtualization.

FIG. 5C shows an example of a corresponding virtualized
tree structure according to a virtualization path <storage
apparatus 300>:/root-><storage apparatus 400>:/root/dir2.
Further, it is possible to divide the one single file system of
FIG. 4 into two separate file systems according to FIGS. 5B
and 5C in case the contents of /dirl and /dir2 shall be
organized in separate file systems managed by the file
system management unit 310.

In the above example, the second file system is virtualized
in that it is identically rebuilt in the first file system in that
each directory of the second file system is created under the
similar path in the first file system and each file of the second
file system is associated with a respective external link
object under the similar path in the first file system. How-
ever, in some embodiments, there may be provided addi-
tionally implemented mechanisms to ensure that directories
and files related to user data in the second file system are
virtualized in the first file system, while other file system
objects of the second file system, such as for example
temporary directories, snapshot directories or other file
system objects that behave differently than user-data related
file system objects, are not virtualized in the first file system.
For example, directories such as temporary directories or
snapshot directories of the second file system may not be
created in the first file system in such embodiments.

FIG. 6 shows an exemplary flow chart of a method for
virtualization initialization. The method comprises a step S1
of blocking all user/client access from clients 100 to the
second storage apparatus 300 (in a situation similar to e.g.
FIG. 1A) and a step S2 of interconnecting the first storage
apparatus 300 between the second storage apparatus 400 and
the clients 100.

Furthermore, the method for virtualization initialization
comprises a step S3 of creating a highest order directory in
the file system managed by the first file system management
unit 310 and a step S4 of creating (setting) a virtualization
path associating the highest order directory created in step
S3 with a highest order directory of the portion of the file
system managed by the second file system management unit
410 that is to be virtualized (e.g. the highest order directory
or one of the lower directories as illustrated in connection
with FIGS. 5A to 5C).

Furthermore, the method for virtualization initialization
comprises a step S5 of creating a directory information job
for the highest order directory set in step S3. The method
further comprises a step S6 of enabling automatic back-
ground virtualization and another step S7 of enabling user
access dependent on-demand virtualization before directly
enabling client access to the first storage apparatus 300 in
step S8. It is to be noted that the order of steps S1 to S7 can
be interchanged in plural different manners, with the con-
ditions that step S1 is performed before step2, steps S4 and
S5 are performed after step S3, steps S6 and S7 are per-
formed after step S4, and step S8 is performed after step S7.

Most importantly, user access to the file system can be
enabled (step S8) immediately as soon as the second storage
apparatus is interconnected (step S2), a virtualization path is
set (step S4) and on-demand virtualization is enabled (step
S7). Specifically, as soon as a user tries to access a not-yet-
virtualized file system object in the file system, the respec-
tive file system object will be virtualized by means of the
enabled on-demand virtualization (as exemplarily described
in more detail below) so as to allow access to the file system
object via the virtualized file system object, and in case the

10

15

20

25

30

35

40

45

50

55

60

65

20

user tries to access an already virtualized file system object,
the respective file system object can be accessed via the
respective virtualized file system object.

Accordingly, a data storage system according to the above
aspect can immediately enable user access to the file system
very shortly after interconnecting the first storage apparatus
300 under the condition that a virtualization path has been
created and on-demand virtualization has been enabled
independent of whether automatic background virtualization
(as exemplarily described in more detail below) has yet
begun and independent of the status of automatic back-
ground virtualization. That is, access to the file system by
clients 100 can be enabled again advantageously very
shortly after the single interruption for interconnecting the
first storage apparatus 300 in between the clients 100 and the
second storage apparatus 400.

In the following description, exemplary aspects of auto-
matic background virtualization (enabled in step S6 above)
will be described in more detail below. The automatic
background virtualization is performed automatically and
will lead to a result that the complete file tree structure of the
file system(s) managed by the second file system manage-
ment unit 410 of the second storage apparatus 400 will be
virtualized completely (i.e. will be reconstructed completely
in the virtualized manner as described in connection with
FIGS. 5A to 5C above) on the first storage apparatus 400.

The principle exemplary aspects of automatic background
virtualization will be first described in connection with
automatically background virtualizing the file tree of FIG. 4.
The automatic background virtualization can be performed
by the crawling unit 343 and the virtualization unit 344 of
FIG. 3 above. And first, the crawling unit 343 will execute
the directory information job created in the step S5 above.
Specifically, upon execution of step S5, the job queue 346A
will contain the directory information job for the highest
order directory in the file system managed by the file system
management unit 310 according to the virtualization path set
in step S4 (e.g. the two respective /root directories in the
above example of FIGS. 4 and 5A).

FIG. 7 shows an illustration of information exchange
between the first and second file system servers (embodying
the first and second file system management units 310 and
410) for automatic background virtualization.

Upon executing the directory information job for the /root
directory by the crawling unit 343, the first file system
management unit 310 will issue a request for /root directory
information (“request /root information™) in connection with
the /root directory of the file system of FIG. 4 (the highest
order directory of the file system managed by the second file
system management unit 410 as indicated by the set virtu-
alization path, i.e. for the virtualization paths of FIGS. 5B
and 5C, the first issued directory information request would
already directed to /dirl and /dir2, respectively) to the
second file system management unit 410.

In response to the request for /root directory information,
the second file system management unit 410 responds by
providing /root directory information including information
on the child directories /dirl and /dir2 and the files “file1”
and “file2”. Specifically, the response will indicate at least
that directories /dirl and /dir2 and the files “filel” and
“file2” exist in the /root directory of the file system managed
by the second file system management unit 410.

Upon receipt of the response indicating that directories
/dirl and /dir2 and the files “filel” and “file2” exist in the
/root directory of the file system managed by the second file
system management unit 410 at the first file system man-
agement unit 310, the crawling unit 343 will update the

US 9,460,111 B2

21

virtualization management information table 341 for regis-
tering that it was discovered that directories /dirl and /dir2
and the files “file1” and “file2” exist in the /root directory of
the file system managed by the second file system manage-
ment unit 410, and that these directories /dirl and /dir2 and
the files “filel” and “file2” need virtualization by the virtu-
alization unit 344.

FIG. 8 shows an example of a virtualization management
information table at a first point of time during virtualization
after receiving the response of FIG. 7.

Exemplarily, the virtualization management information
table includes various information about each file system
object which has been discovered by the crawling unit 343
including a name of the file system object as used by the
client 100 and the second file system management unit 410,
an object type thereof (e.g. indicating whether the file
system object is a directory or a file), an object ID thereof
as used by the second management file system management
unit 410, a virtualization status of the file system object, and
an object status of the file system object.

In addition to the above, the virtualization management
information table may store further information such as
parent directory of the respective file system object, remote
path location of the respective file system object, one or
more attributes of the respective file system object and so on.

As an “object ID”, the virtualization management infor-
mation table preferably stores an object ID that uniquely
identifies the respective file system object in the file system
as managed by the second management file system man-
agement unit 410. Such object IDs may be represented by or
include information on IDs such as file handles, Inode
numbers, server identifiers, device numbers and the like, and
identify uniquely the respective file system object indepen-
dent of name and remote path location. Such object IDs
typically exist in file systems managed by known file system
servers because any object needs to be uniquely identified
independent of the name and path location (e.g. in case a file
is renamed and/or moved from one particular path location
to another path location, the object ID may remain the same
while name and/or path location thereof ma change).

Under “virtualization status”, the current status of virtu-
alization of the discovered file system object may be indi-
cated, and a newly discovered file system object will be
labeled as “needs virtualization” so as to indicate that the file
system object needs to be virtualized, i.e. that a correspond-
ing directory needs to be created for a discovered directory
and that a corresponding external link object needs to be
created for a discovered file.

Once the respective file system object has been virtual-
ized, i.e. when a corresponding directory has been created
for a discovered directory or a corresponding external link
object has been created for a discovered file, the virtualiza-
tion status in the virtualization management information
table is updated to “virtualized”.

In FIG. 8, the /root directory has been created already in
step S3 of FIG. 6 above, and is labeled as “virtualized”
already with respect to its virtualization status. On the other
hand all other discovered file system objects, i.e. directories
/dirl and /dir2 and files “file1” and “file2” have just been
discovered and no corresponding virtualized file objects yet
exist in the file system as managed by the first file system
management unit 310 so that the objects are referred to as
having the virtualization status “needs migration”.

Under “object status”, the current status of the discovered
file system object may be indicated, and a newly discovered
file is labeled as “needs migration” indicating that no user
data (file content) corresponding to the respective file yet

10

20

25

30

40

45

22

exists on the storage units 320 and 330 of the first storage
apparatus 300 and that the file needs to be migrated to the
first storage apparatus 300 (after migration will be enabled),
and a newly discovered directory is labeled as “Incomplete”
indicating that not all of the file system objects existing
directly below the respective directory have been virtualized
yet. It is to be noted that all file system objects (/dirl, /dir2,
filel and file2) that exist in the /root directory according to
the tree structure of FIG. 4 have been discovered already, but
since these objects have not been virtualized yet, the /root
directory remains to be labeled as having the object status
“Incomplete”.

Once the directories /dirl and /dir2 have been created in
the /root directory of the file system managed by the first file
system management unit 310 and the external link objects
XLO1 and XI.O2 have been created in the /root directory of
the file system managed by the first file system management
unit 310, the /root directory can be updated to have the
object status “Complete” (see below).

It is to be noted that in addition to updating the virtual-
ization management information table as described above
after receiving the response of FIG. 7, the crawling unit 343
of the first file system management unit 310 will automati-
cally create virtualization jobs for each of the newly dis-
covered file system objects which can be added to the
virtualization job queue 346B to be executed by the virtu-
alization unit 344 (e.g. a virtualization job for /dirl, a
virtualization job for /dir2, a virtualization job for filel, and
a virtualization job for file2), and will automatically create
directory information jobs for each of the newly discovered
child directories which can be added to the crawler job
queue 346A to be executed by the crawling unit 343 (e.g. a
directory information job for /dirl and a directory informa-
tion job for /dir2).

Accordingly, virtualization of already discovered file sys-
tem objects and discovering new file system objects can be
performed in a highly efficient manner in parallel to each
other in that existing virtualization jobs can be executed by
the virtualization unit 344 while further directory informa-
tion jobs can be executed, in parallel, by the crawling unit
343 for discovering new file system objects and for creating
new virtualization jobs and/or directory information jobs for
these newly discovered objects.

FIG. 9 shows an example of a partially virtualized file
system tree structure. Specifically, once the directories /dirl
and /dir2 have been created in the /root directory of the file
system managed by the first file system management unit
310 and the external link objects XLLO1 and X1.O2 have
been created in the /root directory of the file system managed
by the first file system management unit 310 by executing all
four virtualization jobs created by the crawling unit 343, the
tree structure of the file system being managed by the first
file system management unit 310 will be as shown in FIG.
9. Because each of the file system objects /dirl, /dir2, filel
and file2 that directly exists below the /root directory as a
parent directory have been virtualized according to FIG. 9,
the object status of the /root directory can be updated as
being “Complete” as indicated in FIG. 10.

In the above example, the number of file system objects
existing below the/root directory as a parent directory is
rather low, and, in principle, it must be assumed that a large
number of file system objects may exist below a certain
parent directory, e.g. in some file systems, millions of files
and child directories may exist below a certain parent
directory. In typical file system communication protocols,
standard requests for receiving directory information (such
as e.g. READDIR or READDIRPLUS in NFS-based file

US 9,460,111 B2

23

system communication protocols), the number of entries to
be returned in the response may be limited to a maximum
number so that not all entries may be known already after
issuing a single directory information request. In such sce-
narios, the crawling unit 343 may repeatedly issue directory
information requests to the same parent directory of the file
system until all file system objects thereof (child entries
including files and child directories) have been returned.

Preferably, in such scenarios as discussed in the above
paragraph, the crawling unit 343 may further update the
virtualization management information table after each
response before issuing the next directory information
request in connection with the same parent directory, and/or
the crawling unit 343 may already create directory informa-
tion jobs for each of the child directories discovered so far
and/or virtualization jobs for all file system objects discov-
ered in the respective parent directory so far after each
response before issuing the next directory information
request in connection with the same parent directory.

Furthermore, in order to be able to restart the directory
crawling by the crawling unit 343 at a correct crawling start
position after an undesirable interruption of the crawling
process, the crawling unit 343 preferably further updates the
object status of the respective parent directory upon receipt
of each response so as to add information indicating the
entry position up to which the respective parent directory
has been read (which may correspond to a position indicat-
ing data item provided by the last response, such as a
position indicating cookie).

FIG. 11 shows another illustration of information
exchange between the first and second file system manage-
ment units 310 and 410 for automatic background virtual-
ization. Specifically, as discussed already above, it is
assumed that the crawling unit 343 has created a respective
directory information job for each of the child directories
/dirl and /dir2 upon receipt of the response of FIG. 7 and
upon updating the virtualization management information
table as shown in FIG. 8). Next, when returning to the next
job in the directory information job queue 346 A, the crawl-
ing unit 343 will be able to obtain the directory information
job for directory /dirl, and will then issue a request for
directory information with regard to the /dirl directory.

Specifically, upon executing the directory information job
for the /dirl directory by the crawling unit 343, the first file
system management unit 310 will issue the request for /dirl
directory information (“request /dirl information™) in con-
nection with the /dirl directory of the file system of FIG. 4
as managed by the second file system management unit 410.
In response to the request for /dirl directory information, the
second file system management unit 410 responds by pro-
viding /dirl directory information including information on
the child directories /dirll and /dirl12. The response may
indicate at least that directories /dirll and /dir12 exist in the
/dirl directory of the file system managed by the second file
system management unit 410.

Upon receipt of the response indicating that directories
/dir11 and /dir12 exist in the /dir] directory of the file system
managed by the second file system management unit 410 at
the first file system management unit 310, the crawling unit
343 will update the virtualization management information
table 341 for registering that it was discovered that direc-
tories /dirl1 and /dir12 exist in the /dirl directory of the file
system managed by the second file system management unit
410, and that these directories /dirl1 and /dirl12 need virtu-
alization by the virtualization unit 344, please seec the
correspondingly updated virtualization management infor-
mation table as shown in FIG. 12.

10

15

20

25

30

35

40

45

50

55

60

65

24

As shown in FIG. 12, all directories for which not all child
entries have been discovered and virtualized are labeled as
having the object status “Incomplete”, and all non-virtual-
ized file system objects are referred to as having the virtu-
alization status “needs virtualization”. Accordingly, in case
of interruption of the virtualization procedure, file system
virtualization can be reliably and efficiently started at a
convenient starting point and does not need to be reset
completely, even in the worst case in which all or at least
some existing jobs in the job queues may be lost, in that the
virtualization procedure may continue, after the undesirable
interruption, easily by creating a virtualization job for each
file system object indicated as “needs virtualization” in the
virtualization management information table 341, and by
creating a directory information job for each directory
indicated as being “Incomplete” in the virtualization man-
agement information table 341.

As exemplarily shown in FIG. 12, the virtualization
management information table 341 can be stored in blocks
341a and 3415 (which also can be referred to as chunks) of
a pre-determined number of file system object entries. In the
example of FIG. 12 there are only 5 entry lines per block
341a and 3415 but it is to be noted that this is only for
explanatory reasons, and the entry number per block may
much larger for an actual implementation.

Storing the virtualization management information in
blocks (chunks), however, provides the advantage that the
separate blocks can be conveniently written from the
memory 314 (where the data contents of the virtualization
management information table 341 may be stored for pur-
poses of ongoing virtualization processing and updating by
the crawling unit 343, the virtualization unit 344 and the
migration means 345) to the storage device 315 for backup
purposes by the virtualization management information
backup unit 342.

Specifically, backup can be performed more efficiently
without significantly affecting the ongoing crawling and
virtualization or migration processing by the crawling unit
343, the virtualization unit 344 and the migration means
345, in that only the one block to be currently backup-copied
to the storage device 315 needs to be temporarily blocked by
the virtualization management information backup unit 342,
while all other blocks of the virtualization management
information table 341 will be read- and write-accessible by
the crawling unit 343, the virtualization unit 344 and the
migration means 345.

Preferred aspects in connection with backup processing
for backup of the virtualization management information
table 341 in backup blocks 341a and 34156 will be described
in more detail further below.

In addition to the above, upon receiving the response of
FIG. 11, the crawling unit 343 creates directory information
jobs for each of the directories /dirll and /dir12 to be added
to the queue 346A and virtualization jobs for each of the
directories /dirl1 and /dir12 to be added to the queue 346B.
Once the virtualization jobs for the directories /dirll and
/dir12 will have been executed by the virtualization unit 344,
the directories /dirl1 and /dir12 will exist directly below the
respective parent directory /dirl in the file system managed
by the first file system management unit 310 under the
similar local path corresponding to the respective remote
path in the file system managed by the second file system
management unit 410.

FIG. 13 shows an example of the respective partially
virtualized file system tree structure in which the child
directories /dirl1 and /dir12 of parent directory /dirl have
been created for virtualization.

US 9,460,111 B2

25

Complete and reliable automatic background virtualiza-
tion may be achieved efficiently and reliably by being
continued according to the above aspects including parallel
loops of executing directory information jobs by the crawl-
ing unit 343, updating of the virtualization management
information table 341 by the crawling unit 343, creating new
directory information jobs and virtualization jobs by the
crawling unit 343, executing virtualization jobs by the
virtualization unit 344 and so on, until the complete tree
structure of the file system managed by the second file
system management unit 410 is virtually reconstructed com-
pletely in the file system managed by the first file system
management unit 310.

That is, the complete tree structure of the file system
managed by the second file system management unit 410 is
virtually reconstructed completely in the file system man-
aged by the first file system management unit 310, when
there exists a corresponding directory in the file system
managed by the first file system management unit 310 for
each directory of the file system managed by the second file
system management unit 410 and when there exists a
corresponding external link object in the file system man-
aged by the first file system management unit 310 for each
file (or similar object such as hard linked files) of the file
system managed by the second file system management unit
410.

While the above description was made with reference to
a specific example of a file tree structure as shown in FIG.
4, a more general aspects of a virtualization procedure will
be given in connection with the below flow charts.

FIG. 14 shows an exemplary flow chart of automatic
background virtualization management as may be per-
formed by the crawling unit 343.

The automatic background virtualization management
method of FIG. 14 comprises a step S1001 of checking for
a next job in the job queue. Specifically, in case multiple job
queues are provided as exemplarily shown in FIG. 3, the
crawling unit 343 may search for a next directory informa-
tion job in the job queue 346A. In the next step S1002, the
crawling unit 343 can observe a new directory information
job for a certain previously discovered directory existing in
the file system as managed by the second file system
management unit 410 (or in case no child directories have
been discovered yet, e.g. at the beginning of the virtualiza-
tion phase, the crawling unit 343 will at least observe the
directory information job created in step S5 of FIG. 6
above).

In the step S1003, the crawling unit 343 checks the
virtualization management information table 341 for the
target directory of the directory information job obtained in
step S1002. Specifically, when the target directory is already
present in the virtualization management information table
341, the crawling unit 343 checks the object status of the
target directory in the virtualization management informa-
tion table 341 as to whether the target directory is indicated
as being Complete or Incomplete.

If the target directory exists in the virtualization manage-
ment information table 341 and is already indicated as being
Complete (i.e. all child entries have been virtualized
already), i.e. when step S1004 returns NO, the crawling unit
343 will check the job queue for a next job in step S1005.

On the other hand, if the target directory is not yet
complete (or does not exist yet in the virtualization man-
agement information table 341), i.e. when step S1004
returns YES, the crawling unit 343 requests directory infor-
mation for the target directory in a next step S1006 in that
it issues one or more directory information requests in

10

15

20

25

30

35

40

45

50

55

60

65

26

connection with the target directory to the second file system
management unit 410 of the second storage apparatus 400.

In step S1007, the corresponding one or more responses
from the second file system management unit 410 of the
second storage apparatus 400 are received, providing the
directory information indicating all or at least of some of the
child entries of the target directory.

In the next step S1008, the crawling unit 343 updates the
virtualization management information table 341 and writes
the received directory information for the target directory to
the virtualization management information table 341. Spe-
cifically, for each child entry (e.g. an entry indicating a file
existing in the target directory or an entry indicating a child
directory existing in the target directory) included in the
information received in step S1007, a corresponding entry
will be added to the virtualization management information
table 341 as discussed above, the object status and the
virtualization status being indicated according to the type of
file system object, i.e. virtualization status “needs virtual-
ization” for each file system object and object status “incom-
plete” for discovered child directories or object status “needs
migration” for discovered files or similar objects such as
hard linked files.

Furthermore, the crawling unit 343 creates a respective
virtualization job for each of the newly discovered child
objects in step S1009 and further creates a respective
directory information job for each newly discovered child
directory in step S1010, and adds the newly created jobs to
the respective job queue or job queues.

If all child objects of the target directory up to the last
child object have been observed in step S1007 (step S1011
returns YES), the crawling unit 343 will continue with the
next job in the job queue (step S1005), and otherwise steps
S1006 to S1010 will be repeated until all child objects of the
target directory have been observed. Alternatively to the
loop of steps S1006 to S1010, the crawling unit 343 may
also just create a new directory information job for the same
target directory when step S1011 returns NO and then
continue with step S1005, allowing for further paralleliza-
tion of job execution.

As previously discussed further above, in case the crawl-
ing unit 343 did already previously receive directory infor-
mation for some of the child entries of the respective target
directory, e.g. in connection with previous jobs for the same
target directory or when repeating steps S1006 to S1010 in
a loop after step S1011 returned NO (e.g. due to a limitation
in the number of returned child entries according to the used
file system communication protocol), the crawling unit 343
may further repeatedly update a start position (e.g. based on
a position indicated in the response of step S1007 or by
using, for example, a cookie) for the request for directory
information for the target directory in the virtualization
management information table 341 in step S1008, allowing
to request directory information for the next not-yet-discov-
ered child entries by using the start position in the request of
step S1006.

Due to new directory information job creation in step
S1010, the automatic background virtualization will be
performed continuously until all directory information jobs
are executed and no further directory information jobs exist,
indicating that all directories of the file system have been
observed, and all child entries (files and further child direc-
tories) have been discovered, so that a respective virtualiza-
tion job as created in step S1009 exists (or has been already
executed) for each of the discovered file system objects.

In parallel to the above procedure, the virtualization unit
344 will automatically execute virtualization jobs created by

US 9,460,111 B2

27

the crawling unit 343 as discussed further below. However,
for very large directories, there may occur a problem when
the crawling unit 343 creates a very large number of
virtualization jobs in the loop of steps S1006 to S1010, in
particular in the repeating of step S1009 for all of the various
child objects. It may, therefore, be desirable that the crawl-
ing speed of the crawling unit 343 is variable and can be
automatically (and/or manually) decreased depending on the
conditions.

For example, when it is detected that the data buffer unit
347 for temporarily storing jobs as soon as one or more of
the job queues are occupied, becomes occupied itself (e.g.
when the number of jobs held in the data buffer unit 347
exceeds a threshold, when the available storage space in the
data buffer unit 347 falls below a threshold, or when the ratio
of available buffer storage space to the buffer capacity
exceeds a threshold, or the like), the processing speed of the
crawling unit 343 may be decreased, and the crawling unit
343 may even be stopped until the data buffer unit 347
becomes less occupied (e.g. when the number of jobs held
in the data buffer unit 347 falls below another threshold,
when the available storage space in the data buffer unit 347
exceeds another threshold, or when the ratio of available
buffer storage space to the buffer capacity falls below
another threshold, or the like).

Also, when the communication between the storage appa-
ratus 300 and the storage apparatus 400 is realized by a Fibre
channel connection having a plurality of parallel Fibre
channels, it may be desirable to control the processing speed
of the crawling unit 343 based on Fibre channel availability,
in that the processing speed of the crawling unit 343 is
increased for increasing Fibre channel availability and in
that the processing speed of the crawling unit 343 is
decreased for decreasing Fibre channel availability (allow-
ing for more efficient connections for communications due
to actual user access and on-demand virtualization, and for
more efficient connections for communications in connec-
tion with virtualization jobs and/or migration jobs). Also, in
order to allow for efficient user access, the processing of the
crawling unit 343 may be paused in case the Fibre channel
availability falls below a threshold in order to avoid delays
in user access communications due to limited Fibre channel
availability.

FIG. 15 shows an exemplary flow chart of automatic
background virtualization as performed by the virtualization
unit 344. In a first step S1101, the virtualization unit 344
checks the job queue for a next job, and obtains a virtual-
ization job for a certain file system object in step S1102. If
the target file system object of the respective virtualization
job is a directory (step S1103 returns directory), the method
continues with step S1104, and, if the target file system
object of the respective virtualization job is a file (step S1103
returns file), the method continues with step S1112.

For a directory of the file system managed by the second
file system management unit 410 to be virtualized, the
virtualization unit 344 creates a new directory in the file
system managed by the first file system management unit
310 in a local path location within the parent directory,
which corresponds to the respective parent directory of the
directory to be virtualized within the file system managed by
the second file system management unit 410.

The new directory is created with the same name as the
directory to be virtualized so as to be able to present the
same file tree structure to clients 100. Not creating a virtual
directory but already creating true directories even during
the virtualization phase has the advantage that a directory
corresponding directory can be created in the file system of

25

40

45

55

28

the first storage apparatus 300 having the identical path tree
structure than the file system of the second storage apparatus
400 to be virtualized, and all external link objects of the file
system in the first storage apparatus 300 can be stored
already in the correct directory tree structure, so that both
file systems will have the identical tree structure after
virtualization. Also, creating the directories allows to addi-
tionally store directory metadata and file metadata already in
association with the created directory.

When creating the directory in step S1104 (or already
before-hand during steps S1006 and S1007), all directory
attributes of the directory to be virtualized are transferred
from the second storage apparatus 400 to the first storage
apparatus 300, and are stored in association with the newly
created directory in the file system as managed by the first
file system management unit 310. This has the advantage
that user requests directed to attributes of the respective
directory can be handled locally by the first file system
management unit 310 and do not necessarily require com-
munication with the second storage apparatus 400.

According to some aspects of the invention, it may be
desirable to be able to locally return user requests which
inquire about the link count of the respective directory after
virtualization thereof even during ongoing virtualization. In
principle, the real underlying link count of any directory in
a typical file system can be calculated as N+2, wherein N is
the total number of child directories of the particular direc-
tory. The reason is that the parent directory of the particular
directory includes, of course, a link to the particular direc-
tory and the particular directory itself includes a child entry
which represents a self-reference link to the particular
directory (sometimes referred to as the on-dot-link or/.), and
each of the child directories of the particular directory
includes a link to their respective parent directory (some-
times referred to as the double-dot-link or /..).

However, during virtualization phase, when a particular
directory is created in the file system managed by the first
file system management unit 310, the corresponding child
directories in the file system managed by the second file
system management unit 410, may not be discovered com-
pletely yet by the crawling unit 343 or, if discovered, may
not be virtualized yet, so that no corresponding child direc-
tories or at least not all of the corresponding child directories
may exist yet in the file system managed by the first file
system management unit 310.

In order to be able to reliably, efficiently and correctly
handle attribute request relating to the link count of a
virtualized directory locally on the first storage apparatus
300, when creating a directory during virtualization thereof
in step S1104, the method continues (in any possible order)
with the optional steps S1105 of creating a self-reference
link in the respective directory, S1106 of calculating a fake
link count, S1107 of writing directory metadata, S1108 of
creating a parent directory link, and S1109 of decrement the
fake link count in the metadata of the parent directory by
one.

Accordingly, when creating the particular directory in
step S1104 in its respective parent directory, the link to the
particular directory inside of the parent directory will be
automatically created by way of directory creation, and the
self-reference link (such as the single-dot-link or /.) will be
created in step S1105, leading to a real link count of 2
(because no child directories with parent directory links /..
have been created yet), while the underlying actual link
count of the corresponding directory in the file system as

US 9,460,111 B2

29

managed by the second file system management unit 410 is
N+2, N being the number of child directories of the par-
ticular directory.

Therefore, a fake link count will be calculated in step
S1106 based on the number N of child directories of the
particular directory in the file system as managed by the
second file system management unit 410, e.g. by requesting
the real link count of the particular directory from the second
file system management unit 410 and subtracting 2, and is
written to the directory metadata in step S1107. Then, when
a user requests the link number of the particular directory,
the first file system management unit 310 can efficiently
handle the request locally without requiring further commu-
nication with the second storage apparatus 400 by just
adding the real link count as observed on the file system as
managed by the first file system management unit 310 and
the fake link count as stored in the directory metadata, and
by returning the sum of the real link count and the fake link
count.

For the above procedure, the fake link count stored in the
metadata of a virtualized directory needs to be updated
whenever child directories thereof are created for purposes
of their own virtualization. That is, in the method of FIG. 15,
the virtualization of a directory further includes the steps
S1108 of creating the parent directory link in the particular
directory (i.e. the double-dot link or /.) and S1109 of
decrementing the fake link count as stored in the metadata
of the parent directory by one.

For example, in the FIG. 9 above, directory /dir has
already been created in the virtualized file system tree
structure, and its real link count is 2 (for the self-reference
link in /dirl and the /dir1 link in the /root directory) but the
actual link count that needs to be returned to a user inquiring
about the link count of directory /dirl is 4 because the
directory /dir in FIG. 4 additionally has two more links,
namely, one additional parent directory link /.. from each of
the child directories /dirll and /dir12. Therefore, in FIG. 9,
the fake link count of directory /dirl will be calculated as 2.
Once directory /dirl1 and the parent directory link /.. therein
will be created upon execution of a virtualization job for
directory /dirl11, the real link count will be 3 and, thus, the
fake link count will be decremented by one resulting in 1.
Still, the sum of real link count and the fake link count is 4
and returns the correct true link count of the directory /dirl
in FIG. 4.

Once all child directories of a particular directory have
been virtualized, the fake link count of the particular direc-
tory should have become 0, and if the fake link count of a
directory for which no further virtualization jobs exist or a
directory which is indicated to have the object status “Com-
plete” is still larger than zero, such situation may indicate
about a problem that not all child directories have been
discovered, and a directory information job can be created
again for the particular directory in order to guarantee the
completeness of the virtualized directory.

Vice versa, it is possible to detect whether a directory is
complete in that it is checked whether the fake link count of
the parent directory of the particular directory as created in
step S1104 has become 0, and if step S1110 returns YES,
when the parent directory is indicated as being “Incom-
plete”, the virtualization management information table 341
is updated in that the object status of the parent directory is
updated to “Complete”. Thereafter (or directly after step
S1110 returns NO), the virtualization status of the particular
directory is updated to “virtualized” in step S1114, and the
virtualization unit 344 checks the job queue for the next job
(step S1115, corresponding to step S1101).

20

35

40

45

50

55

30

On the other hand, when step S1103 returns “file” when
the object to be virtualized according to the virtualization
job of S1102 is a certain file, the virtualization unit 344
creates a respective external link object, referred to as XL.O,
representing the certain file and allowing access to the
certain file of the file system managed by the second file
system management unit 410, in the local path location
corresponding to the remote path location of the file, i.e. in
the virtualized directory that corresponds to the directory of
the file system managed by the second file system manage-
ment unit 410 in which the certain file exists.

On the other hand, instead of steps S1112 and S1113 of
FIG. 14 as described above, a more detailed method as
described exemplarily with reference to FIG. 16 below may
optionally be implemented for file virtualization so as to be
able to enable more efficient handling of hard linked files,
also referred to as hard links. It is to be noted that “hard
links” may refer to a group of files which are associated with
the same actual user data.

That is, while each hard link of a group of hard links from
the view point of the user(s) has the appearance of an
independent file, the hard links potentially having different
names and/or different path locations, each hard link points
to the same actual user data stored on the storage unit 410.
And, if that user data were to be modified, e.g. by writing
data to one of the hard linked files, the underlying data were
to be modified for all hard links, and, if one or more of the
hard links were to be renamed and/or moved to different path
locations, other hard links would not recognize such moving
or renaming of hard links (which is different for so-called
soft links).

When the crawling unit 343 discovers a file which rep-
resents one hard link of a group of hard links pointing to the
same file data content, the crawling unit 343 still cannot
easily discover the other hard links of the group of hard
links, but the crawling unit 343 or the virtualization unit 344
can determine the total number of hard links by reading the
link count from the file attributes in the metadata for the
discovered hard link. Similar to the situation in connection
with link counts of directories, it is desirable that the first file
system management unit 310 can return link counts of hard
links locally upon virtualization of only one of the link
counts, and it is desirable to efficiently handle virtualization
of hard links.

FIG. 16 shows another exemplary flow chart of automatic
background migration for more efficiently and reliably han-
dling hard linked files (hard links). Steps S1101, S1102,
S1112, S1113, S1114 and S1115 are similar to the steps of the
same reference numeral in FIG. 15 as described above.

Upon obtaining the virtualization job for a certain file, the
link count N of the file is determined in step S1120 (e.g. by
requesting the link count information for the respective file
from the second file system management unit 410 or by
receiving metadata indicating the link counts of files already
with the responses of step S1007 of FIG. 14), and it is
checked whether the link count is larger than one (step
S1121). When step S1121 returns NO, the method continues
similar to the file virtualization of FIG. 15 (i.e. steps S1112,
S1113, S1114 and S1115/S1101).

However, when the link count N of the particular file to
be virtualized is larger than one (i.e. when there exists at
least one other hard link) and step S1121 returns YES, the
object ID of the file is determined (step S1122) and a hidden
index directory, which has been created previously in the file
system managed by the first file system management unit

US 9,460,111 B2

31

310, is checked for the existence of a subdirectory which is
associated with the object ID of the hard link/file (step
S1123).

As will become apparent in the following, the existence of
the subdirectory, which is associated with the object ID of
the hard link/file in the hidden index directory, would
indicate that another hard link of the same group of hard
links (having the same object ID but differing names and/or
remote path locations) was already discovered previously by
the crawling unit 343. On the other hand, if no such
associated subdirectory exists in the hidden index directory,
this indicates that no other hard link of the same group of
hard links was previously discovered.

Accordingly, if no associated subdirectory exists in the
hidden index directory, indicating that no other hard link of
the same group of hard links was previously discovered, an
index subdirectory being associated with the object ID of the
discovered hard link (i.e. of the particular file) is created in
the hidden index directory in step S1125 and within the
created associated index subdirectory, N-1 hard links are
created within the associated index subdirectory in step
S1126, and the external link object that is created in the local
path location corresponding to the remote path location of
the file/hard link to be virtualized in step S1112 is created as
another hard link of the group of hard links as created in step
S1126. Therefore, the actual link count of the external link
object created in step S1112 is N-1+1=N and corresponds
identically to the underlying actual link count N of the
file/hard link to be virtualized.

On the other hand, if it is determined in step S1124 that
an index subdirectory being associated with the object ID of
the file/hard link to be virtualized already exists in the
hidden index directory (step S1124 returns YES), one of the
hard links existing in the associated index subdirectory is
removed in step S1127 and a corresponding hard linked
external link object is created in the local path location
corresponding to the remote path location of the file/hard
link to be virtualized in step S1112, the hard linked external
link object being created as another hard link of the group of
hard links of the associated index subdirectory.

By steps S1127 and S1112, the underlying true total link
number remains the same in the file system of the first
storage apparatus 300, namely, the hard link number N of the
corresponding hard link group in the second storage system
400, independent of whether all other hard links have been
discovered yet or not.

Instead of separately performing steps S1127 and S1112,
the similar effect may be achieved even more efficiently by
providing only one single step of a renaming operation in
connection with one of the hard links stored in the associated
index subdirectory (the renaming operation including
changing the name of one hard link and/or moving that hard
link from the index subdirectory to the local target path
location of the file to be virtualized according to the job of
step S1102).

Finally, if no further hard links remain in the index
subdirectory after step S1127 or after a renaming operation
as discussed above (step S1128 returns NO), the associated
index subdirectory may be removed (e.g. deleted) in step
S1129.

FIG. 17A shows an exemplary schematic data structure of
an external link object 1100 for a file (or hard linked file).
The external link object 1100 exemplarily includes a first
information section 1110 having metadata on the file regard-
ing the external file system as managed by the second file
system management unit 410 including a name as used in the
external file system, a remote path location of the file in the

5

10

20

25

30

35

40

45

50

55

60

65

32

external file system, a remote object ID as used in the
external file system, a remote Inode number as used in the
external file system, a remote file system ID of the external
file system (e.g. in case plural file systems are handled by the
second file system management unit 410), and a remote
device 1D indicating the device of the storage unit 420 in
which the file data content is stored.

By referencing the name and the remote path location
and/or the remote object 1D, the external link object allows
access to the file in the external file system, when a user tries
to access the file by access request referring to the name and
the remote path location and/or the remote object ID as used
in the external file system.

The external link object 1100 exemplarily further includes
a second information section 1120 having metadata on the
file regarding the internal (local) file system as managed by
the first file system management unit 310 including a name
as used in the local file system, a local path location of the
external file object in the internal file system, a local object
ID as used in the internal file system, a local Inode number
as used in the internal file system, a local file system ID of
the internal file system (e.g. in case plural file systems are
handled by the first file system management unit 310), and
a local device ID indicating the device of the storage unit
320 in which the file data content is stored or in which data
blocks may be allocated already for later migration of data.

In addition, the second information section 1120 may
indicate an object store length corresponding to the size of
file content data already stored in the storage unit 420 (i.e.
when the object store length of the file corresponds to the
length of the file on the external file system, this means that
all data of the actual file content has been fully migrated).
Before initiating migration, since no actual file content data
will be transferred, the object store length will remain to be
zero during virtualization.

The external link object 1100 exemplarily further includes
a third information section 1130 having metadata on attri-
butes of the file including a current time stamp (indicating
time of last modifying access to the file), a link count of the
file, a length of the file (in the external file system), and
further file attributes. Since file attributes are stored with the
external link object in the third information section 1130,
attribute requests sent from the users via clients 100 can be
conveniently and efficiently handled locally by the first file
system management unit 310 as soon as the external link
object is created, i.e. as soon as the file is virtualized.

FIG. 17B shows an exemplary schematic data structure
1200 of metadata for a virtualized directory. The directory
metadata 1200 exemplarily includes a first information
section 1210 having metadata on the directory regarding the
external file system including a name as used in the external
file system, a remote path location of the directory in the
external file system, a remote object ID as used in the
external file system, a remote Inode number as used in the
external file system, a remote file system ID of the external
file system (e.g. in case plural file systems are handled by the
second file system management unit 410), and a remote
device 1D indicating the device of the storage unit 420 in
which the directory is stored.

The directory metadata 1200 exemplarily further includes
a second information section 1220 having metadata on the
directory regarding the internal (local) file system as man-
aged by the first file system management unit 310 including
a name as used in the local file system, a local path location
of the directory in the internal file system, a local object ID
as used in the internal file system, a local Inode number as
used in the internal file system, a local file system ID of the

US 9,460,111 B2

33

internal file system (e.g. in case plural file systems are
handled by the first file system management unit 310), and
a local device ID indicating the device of the storage unit
320 in which the directory is stored.

The directory metadata 1200 exemplarily further includes
a third information section 1230 having metadata on attri-
butes of the directory including a current time stamp (indi-
cating time of last modifying access to the directory), a real
link count of the directory, a fake link count of the directory,
and further directory attributes. Since directory attributes are
stored with the directory metadata in the third information
section 1230, attribute requests sent from the users via
clients 100 can be conveniently and efficiently handled
locally by the first file system management unit 310 as soon
as the directory and its metadata are created, i.e. as soon as
the directory is virtualized.

While the above description related to the automatic
background virtualization, further preferable aspects of the
present invention may relate to automatic on-demand virtu-
alization as described below which may be triggered by
receiving access request from a client 100 directed to a
certain file system object.

FIG. 18 shows an illustration of information exchange
between the first and second file system management units
310 and 320 for on-demand virtualization. For example,
when a request is received from a client 100 directed to file8
in a situation of virtualization according to FIG. 13, neither
file8 nor the corresponding virtualized external link object
XLO8 will exist in the directory /dir21 and /dir21 will not
exist either. Therefore, when receiving the access request to
file 8, which was not yet virtualized by automatic back-
ground virtualization, the first file system management unit
310 will block access to file8 for the client 100 and issue a
request for looking up the remote path as indicated by the
user (e.g. /root/dir2/dir21/file8).

Since /dir2 was previously discovered and virtualized
already during automatic background virtualization, the first
file system management unit 310 will issue subsequently
requests to the second file system management unit 410 for
looking up (e.g. a LOOKUP request in NFS-based file
system communication protocols) all remaining unknown
file system objects in the remote path of the target file
“file8”, i.e. it will issue look up requests with respect to
directory /dir21 in /dir2 and file8 in /dir21 and wait for the
respective responses. Then, once the existence of /dir21 and
file8 are confirmed by responses from the second file system
management unit 410, the first file system management unit
310 performs user-triggered on-demand virtualization of
/dir21 and file8 in that it locally creates /dir21 in the
previously virtualized /dir2 and an external link object
XLO8 in the newly created /dir21. Thereafter, user access to
file8 is enabled immediately via the newly created external
link object XLLO8, before virtualizing all other remaining file
system objects in /dir2 and /dir21.

FIG. 19 shows an example of a partially virtualized file
system tree structure after on-demand virtualization accord-
ing to FIG. 18. Accordingly, the directory /dir21 and the
external file system object XLLO8 exist in the file system
locally managed by the first file system management unit
310.

FIG. 20 shows an exemplary flow chart of a method for
enabling user file access during virtualization (including
on-demand virtualization, if the target file has not yet been
virtualized).

When an access request is received from a user via a client
100 directed to a particular target file in the file system in
step S2001, the first file system management unit 310 checks

10

15

20

25

30

35

40

45

50

55

60

65

34

the virtualization management information table 341 as to
whether the target file has been virtualized yet (step S2002).
If step S2002 returns YES, user access to the target file in the
file system is immediately enabled through the external link
object corresponding to the target file (step S2008).

On the other hand, in case the target file has not yet been
virtualized (step S2002 returns NO), the first file system
management unit 310 will look up the target file in the
remote path of the target file as indicated in the access
request received in step S2001. If the existence of the target
file (or any of the directories of the remote path) is not
confirmed by the second file system management unit 410
(e.g. when the user has provided an incorrect remote path)
and step S2004 returns NO, an /O error is returned to the
client 100 which sent the access request.

If the existence of the target file is confirmed by the
second file system management unit 410 by response to the
look up request(s) of step S2003 (step S2004 returns YES),
the first file system management unit 310 will create virtu-
alization jobs for each of the non-virtualized objects of the
remote path (i.e. for all non-virtualized directories in the
remote path and for the target file) in step S2006. In further
preferred aspects, the first file system management unit 310
may additionally create directory information jobs for each
of'the non-virtualized directories of the remote path. And the
above-mentioned jobs may be added ad-hoc to the same job
queue(s) as used for the automatic background virtualization
as mentioned above.

Once all previously non-virtualized objects of the remote
path, including the target file, have been virtualized (step
S2007 returns YES), the user access to the target file in the
file system is enabled through the external link object
corresponding to the target file (step S2008).

FIG. 21 shows an exemplary flow chart of a method for
enabling attributes access during virtualization (including
on-demand virtualization, if the target object has not yet
been virtualized).

When an attribute information request is received from a
user via a client 100 directed to a particular file system
object in the file system in step S2101, the first file system
management unit 310 checks the virtualization management
information table 341 as to whether the target object has
been virtualized yet (step S2102). If step S2102 returns YES,
the request is handled locally and the requested attribute
information is returned based on attribute information stored
in connection with the external link object or the directory
metadata (step S2108).

On the other hand, in case the target object has not yet
been virtualized (step S2102 returns NO), the first file
system management unit 310 will look up the target object
in the remote path of the target object as indicated in the
attribute information request received in step S2101. If the
existence of the target object (or any of the directories of the
remote path) is not confirmed by the second file system
management unit 410 (e.g. when the user has provided an
incorrect remote path) and step S2104 returns NO, an error
is returned to the client 100 which sent the request.

If the existence of the target object is confirmed by the
second file system management unit 410 by response to the
look up request(s) of step S2103 (step S2104 returns YES),
the first file system management unit 310 will create virtu-
alization jobs for each of the non-virtualized objects of the
remote path in step S2106. In further preferred aspects, the
first file system management unit 310 may additionally
create directory information jobs for each of the non-
virtualized directories of the remote path. And the above-

US 9,460,111 B2

35

mentioned jobs may be added ad-hoc to the same job
queue(s) as used for the automatic background virtualization
as mentioned above.

Once all previously non-virtualized objects of the remote
path, including the target object, have been virtualized (step
S2107 returns YES), the request is handled locally and the
requested attribute information is returned based on attribute
information stored in connection with the external link
object or the directory metadata (step S2108).

FIG. 22A shows an exemplary flow chart of a method for
enabling user directory access during virtualization (includ-
ing on-demand virtualization, if the target directory has not
yet been virtualized).

When an access request is received from a user via a client
100 directed to a particular target directory in the file system
in step S2201, the first file system management unit 310
checks the virtualization management information table 341
as to whether the target directory has been virtualized yet
(step S2202). If step S2202 returns YES, the method con-
tinues with step S2209 according to this exemplary aspect
(described further below).

On the other hand, in case the target directory has not yet
been virtualized (step S2202 returns NO), the first file
system management unit 310 will look up the target direc-
tory in the remote path of the target directory as indicated in
the access request received in step S2201. If the existence of
the target directory (or any of the directories of the remote
path) is not confirmed by the second file system manage-
ment unit 410 (e.g. when the user has provided an incorrect
remote path) and step S2204 returns NO, an 1/O error is
returned to the client 100 which sent the access request.

If the existence of the target directory is confirmed by the
second file system management unit 410 by response to the
look up request(s) of step S2203 (step S2204 returns YES),
the first file system management unit 310 will create virtu-
alization jobs for each of the non-virtualized objects of the
remote path (i.e. for all non-virtualized directories in the
remote path) in step S2206. According to this exemplary
aspect, the method continues with step S2207 of additionally
create virtualization jobs for each of the child objects of the
target directory (including all child directories of the target
directory and all files contained in the target directory).

In further preferred aspects, the first file system manage-
ment unit 310 may additionally create directory information
jobs for each of the non-virtualized directories of the remote
path and/or directory information jobs for each of the child
directories of the target directory. And the above-mentioned
jobs may be added ad-hoc to the same job queue(s) as used
for the automatic background virtualization as mentioned
above.

Once all previously non-virtualized objects of the remote
path, including the target directory, have been virtualized
(step S2208 returns YES), and all child directories of the
target directory have been virtualized (step S2209 returns
YES), the method goes to step S2210 and updates the object
status of the target directory to “Complete”. Thereafter,
client access to the target directory is enabled in step S2211.

However, if step S2209 returns S2209 (e.g. when not all
jobs created in step S2207 have been yet executed, or in case
the method went from step S2202 to S2209), the method
waits or may even return to step S2207 for precautionary
reasons. On the other hand, if step S2209 returns NO, the
method may just wait because the virtualization jobs have
been previously created in step S2209 or upon virtualization
of the target directory according to step S1009 of the
automatic background migration, when step S2202 returns
YES.

10

15

20

25

30

35

40

45

50

55

60

65

36

In the above, while it may be desirable to have virtualized
all child directories of the target directory before enabling
user access to the target directory (because all lookup and
directory information requests from the user can be conve-
niently handled locally), such method may lead to undesir-
able delays for target directories having a large number of
child entries.

In order to avoid such undesirable delays for target
directories having a large number of child entries, another
alternative method may be provided in which the child
directories of the target directory are not necessarily virtu-
alized before enabling user access to the target directory.
Accordingly, FIG. 22B shows an alternative exemplary flow
chart of a method for enabling user directory access during
virtualization. Steps S2201, S2202, S2203, S2204, S2205,
S2206, S2207, S2208, and S2211 are the same as in FIG.
22A described above, however, steps S2209 and S2210 are
omitted.

Accordingly, even for target directories having a large
number of child entries (such as millions of entries), user
access to the target directory can be enabled without any
undesirable delays due to virtualization of the large number
of child entries immediately upon virtualization of the target
directory. Still, due to step S2207, background migration of
the child entries will be ongoing.

Regarding directory information requests sent from the
user, it needs to be determined whether the request can be
handled locally or needs to be passed through to the second
storage apparatus 300. For example, when a file system
communication protocol used does limit the number of child
entries that are returned in response to a directory informa-
tion request to a maximum number M so that a list of M
child entries is typically returned in response to a directory
information request, and the request does not indicate any
start position, the request needs to respond by a list of the
first M child entries, and it can be handled locally if already
at least the first M child objects have been virtualized yet.

If less than M child objects of the target directory have
been virtualized yet, the request must be passed through to
the second file system management unit 410, and the
response of the second file system management unit 410 is
returned to the requesting client 100. Similarly, when the
directory information request indicates a start position (e.g.
indicating that the list of returned entries shall start with a
P-th child entry), and the request can be handled locally if
already at least the first M+P child objects have been
virtualized yet, and otherwise the request needs to be passed
through.

FIG. 23 shows an exemplary flow chart of a method for
virtualization management table backup. As described
above, the virtualization management information table 341
is stored in blocks (chunks) 341a to 341d of a predetermined
size (i.e. having a certain number of entry lines).

During virtualization (and/or migration) processing, the
virtualization management information table 341 will be
held in the memory 314, but the virtualization management
information backup unit 342 is adapted to repeatedly or even
periodically perform creating backup copies of the virtual-
ization management information table 341 and copying the
created backup copies to the storage device 315.

However, since plural threads of the multi-threaded
crawling unit 343, virtualization unit 344, and migration unit
345 may very often access the virtualization management
information table 341 for updating the same, and since the
total number of entries in the virtualization management
information table 341 may become very large for file sys-
tems having millions to milliards (thousands of millions) of

US 9,460,111 B2

37

file system objects, backup execution can be made more
efficient when the virtualization management information
table 341 is not backup-copied as a whole but in units of the
blocks 341a to 341d, wherein when access to a certain one
block, which is currently backed up, is blocked, the crawling
unit 343, virtualization unit 344, and migration unit 345 may
still efficiently read-write-access all other blocks.

According to backup processing according to FIG. 23,
virtualization management information table backup is
enabled in step S2301 and the backup processing performed
by the virtualization management information backup unit
342 goes to the next (or first) virtualization management
information table block in step S2302.

In step S2302, it is checked whether that virtualization
management information table block contains any directory
that is indicated as having the object status “Complete”. If
no such directory exists (e.g. in case all entries in the block
relate to files or file-like objects such as hard links or in case
all directories indicated in the block have the object status
“Incomplete”) and step S2303 returns NO, the backup
method immediately continues with step S2308 of creating
a backup copy of the current virtualization management
information block and storing the copy to the storage device
315 (and/or to a remote backup storage device). Then, the
method continues with the next block in step S2302.

On the other hand, if step S2303 returns YES, it is
checked whether there does exist a previous backup version
of the respective block, and if it exists, the previous backup
version is checked for each directory being indicated as
“Complete” in the current block as to whether the same
directory was previously indicated as “Incomplete” in the
previous backup version of that particular block (step
S2305). If step S2305 returns NO, i.e. if all directories
indicated as being Complete in the current block have been
indicated as being Complete already in the previous backup
version of that particular block, the method continues with
step S2308 of creating a backup copy of the current virtu-
alization management information block and storing the
copy to the storage device 315 (and/or to a remote backup
storage device). Then, the method continues with the next
block in step S2302.

However, if step S2305 returns YES, i.e. when at least one
directory that has been indicated as being “Incomplete” in
the previous backup version of that particular block but is
now indicated as being “Complete” in the current version of
the particular block, then the backup processing performed
by the virtualization management information backup unit
342 first determines, in step S2306, all other table blocks of
the virtualization management information table 341 which
do contain at least one entry relating to a child directories of
the directory (or directories) determined in step S2305, and
performs backup of all the other table blocks as determined
in step S2307 before performing backup of the current table
block in step S2308.

Accordingly, even in case of interruption of the virtual-
ization and loss of the data in the memory 314 including the
data of the virtualization management information table 341
and data in the job queues 346 A to 346C, the virtualization
(and migration) could be restarted reliably in that the virtu-
alization management information table 341 could be
restored from the backup copies and a respective virtualiza-
tion job could be created for all objects indicated as “needs
virtualization” and a respective directory information job
could be created for each directory having the object status
“Incomplete”, without the requirement of restarting the
complete virtualization.

40

45

55

38

However, if blocks containing information of just com-
pleted directories were used for backup without also per-
forming preliminary backup of the blocks having informa-
tion on the child directories, objects being contained in the
child directories could be missed. Specifically, when a
directory is indicated as being COMPLETE, it means that all
child objects have been virtualized, and all child directories
do actually already exist (in the file system as well as in the
virtualization management table), however, when data loss
in the job queues leads to the situation in which the directory
information request directed to one or more of these child
directories are lost and their table blocks were not yet backed
up since they were added to the table blocks, child entries of
these child directories might never be virtualized by auto-
matic background virtualization.

On the other hand, by performing backup of table blocks
of completed directories not before performing also backup
in connection with each further table block that contains at
least on child directory entry, such undesirable situations can
be reliably avoided even in worst case scenarios of virtual-
ization interruption and data loss in the job queues and the
virtualization management information table.

FIG. 24 shows an example of the virtualization manage-
ment information table 341 upon completion of virtualiza-
tion of the file system tree of FIG. 4. The table is exemplarily
divided into four data blocks 341a to 341d, and contains one
entry for each of the file system objects of the file system tree
structure of FIG. 4. Each of the file objects indicated in the
table 341 of FIG. 24 has the virtualization status “virtual-
ized” indicating that a respective external link object exists
for each of the files of the file system as managed by the
second file system management unit 410 according to the
structure of FIG. 5A, and each file object has the object
status “needs migration” indicating that none of the actual
file content data has been yet migrated from the storage unit
420 of the second storage apparatus 400 to the storage unit
320 of the first storage apparatus 300.

Each of the directory objects indicated in the table 341 of
FIG. 24 has the virtualization status “virtualized” indicating
that a respective directory of the same name exists for each
of the directories of the file system as managed by the
second file system management unit 410 according to the
tree structures of both of FIGS. 4 and 5A, and each directory
object has the object status “Complete” indicating that all
child objects thereof have been virtualized as well.

In a second phase of migration, the crawling unit 343 may
then re-walk the whole virtualization management informa-
tion table 341 in order to create a respective migration job
for each file object indicated as “needs migration” to be
added to the job queue 346C, so that the migration unit 345
may successively execute one or more migration (e.g. in
parallel as a multi-threaded migration unit 345) and migrate
actual file content data to the storage unit 320 of the first
storage apparatus 300.

Alternatively, it is of course possible to initiate the migra-
tion phase even before the completion of the virtualization
phase. Then, the crawling unit 343 or also the virtualization
unit 344 may create migration jobs already during virtual-
ization, e.g. together with or after one of steps S1007,
S1008, S1009, S1010, S1112, S1113, or S1114 discussed
above.

As described above in connection with FIG. 6, user access
to the file system(s) handled by the second storage apparatus
400 will be indirectly enabled through the first storage
apparatus 300 (step S8) almost immediately after intercon-
necting the second storage apparatus 400 (step S2) and
enabling on-demand virtualization (step S7), wherein on-

US 9,460,111 B2

39

demand virtualization may be performed according to FIGS.
20 to 22B. Then, user access to virtualized objects may be
enabled as discussed in the following in connection with
FIGS. 25A to 25H.

FIG. 25A shows an illustration of information exchange
between a client 100, the first and second file system
management units 310 and 410 for write access to a virtu-
alized file. When a write request is received for a target file
(e.g. file8 of FIG. 4) at the first file system management unit
310, the write request is passed through via the correspond-
ing external link object (e.g. XLLO8 of FIG. 5A) by issuing
a corresponding write request for the target file from the first
file system management unit 310 to the second file system
management unit 410.

Upon receipt of the write acknowledgement from the
second file system management unit 410 at the first file
system management unit 310, the metadata of the corre-
sponding external link object is updated (e.g. by updating
the length of the file, the time stamp or other file attributes
that changed by the write operation), and then the write is
acknowledged to the client 100.

FIG. 25B shows an illustration of information exchange
between a client 100, the first and second file system
management units 310 and 410 for read access to a virtu-
alized file. When a read request is received for a target file
(e.g. file8 of FIG. 4) at the first file system management unit
310, the read request is passed through via the corresponding
external link object (e.g. XLO8 of FIG. 5A) by issuing a
corresponding read request for the target file from the first
file system management unit 310 to the second file system
management unit 410.

Upon receipt of the read response (including the read
data) from the second file system management unit 410 at
the first file system management unit 310, the received read
data is transferred to the client 100 in response to the read
request.

FIG. 25C shows an illustration of information exchange
between a client 100, the first and second file system
management units 310 and 410 for attribute access to a
virtualized file or directory. When a read attribute request is
received for a target file (e.g. file8 of FIG. 4) at the first file
system management unit 310, the corresponding attributes
are read locally from the corresponding external link object
(e.g. XLO8 of FIG. 5A), and the requested attributes are
efficiently and conveniently returned to the client 100 in
response to the client’s read attributes request without any
delays from communication with the second file system
management unit 410.

For directories, read attribute requests are similarly
handled locally at the first file system management unit 310
by reading the corresponding attributes from the directory
metadata, and the read attributes are efficiently and conve-
niently returned to the client 100 in response to the client’s
read attributes request without any delays from communi-
cation with the second file system management unit 410.

In case of an inquiry on the link count of the directory, the
first file system management unit 310 does not return the
actual link count of the corresponding directory on the file
system as managed by the first file system management unit
310 but returns the actual link count of the corresponding
directory on the file system as managed by the second file
system management unit 410 by returning the sum of the
real link count and the fake link count as described above.

FIG. 25D shows an illustration of information exchange
between a client 100, the first and second file system
management units 310 and 410 for deleting a virtualized file.
When a delete request is received for a target file (e.g. file8

10

15

20

25

30

40

45

50

55

60

65

40

of FIG. 4) at the first file system management unit 310, the
delete request is passed through via the corresponding
external link object (e.g. XLO8 of FIG. 5A) by issuing a
corresponding delete request for the target file from the first
file system management unit 310 to the second file system
management unit 410.

Upon deletion of the target file (e.g. file8) by the second
file system management unit 410 and receipt of the deletion
acknowledgement from the second file system management
unit 410 at the first file system management unit 310, the
corresponding external link object (e.g. XLO8) is deleted
and the corresponding entry in the virtualization manage-
ment information table 341 is removed in order to avoid
creation of a migration job for the deleted file, and then the
deletion of the target file is acknowledged to the client 100.

FIG. 25E shows an illustration of information exchange
between a client 100, the first and second file system
management units 310 and 410 for file creation. When a file
creation request is received at the first file system manage-
ment unit 310 for creating a new file in a target path location,
a corresponding new external link object is created in the
local path corresponding to the target path location, and the
file creation request is passed through by issuing a corre-
sponding file creation request for the target file in the target
path location from the first file system management unit 310
to the second file system management unit 410.

Upon creation of the new file in the remote path corre-
sponding to the target path location and receipt of the file
creation acknowledgement from the second file system
management unit 410 at the first file system management
unit 310 (and potentially after updating the metadata of the
corresponding external link object), the file creation of the
target file is acknowledged to the client 100.

FIG. 25F shows an illustration of information exchange
between a client 100, the first and second file system
management units 310 and 410 for changing attributes.
When a change attribute request is received for a target file
(e.g. file8 of FIG. 4) at the first file system management unit
310, the change attribute request is first executed in that the
attributes in the corresponding external link object (e.g.
XLO8 of FIG. 5A) are changed according to the change
attribute request, and the change attribute request is then
passed through via the corresponding external link object
(e.g. XLO8) by issuing the corresponding change attribute
request for the target file from the first file system manage-
ment unit 310 to the second file system management unit
410.

Upon change of the attributes of the target file by the
second file system management unit 410 and receipt of the
attribute change acknowledgement from the second file
system management unit 410 at the first file system man-
agement unit 310, the attribute change is acknowledged to
the client 100. Similarly, when receiving a change attribute
request for a target directory at the first file system manage-
ment unit 310, the directory metadata of the virtualized
directory is updated for changing the attributes according to
the request, and then the change attribute request is trans-
ferred to the second file system management unit 410.

FIG. 25G shows an illustration of information exchange
between a client 100, the first and second file system
management units 310 and 410 for directory creation. When
a directory creation request is received at the first file system
management unit 310 for creating a new empty directory in
a target path location, a corresponding new empty directory
and its directory metadata is created in the local path
corresponding to the target path location and the new
directory is indicated as being COMPLETE, and the direc-

US 9,460,111 B2

41

tory creation request is passed through by issuing a corre-
sponding directory creation request for the target directory
in the target path location from the first file system man-
agement unit 310 to the second file system management unit
410.

Upon creation of the new empty directory in the remote
path of the file system managed by the second file system
management unit 410 corresponding to the target path
location and receipt of the directory creation acknowledge-
ment from the second file system management unit 410 at
the first file system management unit 310 (and potentially
after updating the metadata of the corresponding directory
metadata), the directory creation of the target directory is
acknowledged to the client 100.

FIG. 25H shows an illustration of information exchange
between a client 100, the first and second file system
management units 310 and 410 for directory renaming.
When a directory rename request (changing name and/or
path location of the directory) is received at the first file
system management unit 310 for renaming an existing
directory, the corresponding directory is renamed in accor-
dance with the directory rename request in the file system as
managed by the first file system management unit 310, and
the directory rename request is passed through by issuing a
corresponding directory rename request for the target direc-
tory from the first file system management unit 310 to the
second file system management unit 410.

Upon renaming the target directory in accordance with the
directory rename request in the file system as managed by
the second file system management unit 410 and upon
receipt of the rename acknowledgement at the first file
system management unit 310 from the second file system
management unit 410, the directory renaming of the target
directory is acknowledged to the client 100.

Features, components and specific details of the structures
of the above-described embodiments may be exchanged or
combined to form further embodiments optimized for the
respective application. As far as those modifications are
readily apparent for an expert skilled in the art they shall be
disclosed implicitly by the above description without speci-
fying explicitly every possible combination, for the sake of
conciseness of the present description.

The invention claimed is:

1. An apparatus being connectable to a computer and
another apparatus,

the apparatus being configured to manage a first file

system and to create a first structure information of the
first file system linking between at least one first parent
directory and one or more first child file system objects
of the first parent directory based on a second structure
information of a second file system received from the
other apparatus, the second structure information link-
ing between at least one second parent directory and
one or more second child file system objects of the
second parent directory existing in the second file
system managed by the other apparatus, the second
parent directory being associated with the first parent
directory and the one or more second child file system
objects of the second parent directory being associated
with the one or more second child file system objects of
the second parent directory,

wherein, during creating the first structure information of

the first file system, the apparatus is further configured
to change a first status of the at least one first parent
directory of the first structure information of the first
file system based on creating metadata of the one or
more first child file system objects of the first parent

30

40

45

55

42

directory in the first structure information of the first
file system, the metadata of the one or more first child
file system objects of the first parent directory being
created based on metadata of the respective associated
one or more second child file system objects of the
second parent directory of the second structure infor-
mation of the second file system received from the
other apparatus.

2. The apparatus according to claim 1, wherein, for
creating the first structure information of the first file system,
the apparatus is configured to create virtualized file system
objects in the first file system, each virtualized file system
object of the first file system being associated with a
respective file system object existing in the second file
system.

3. The apparatus according to claim 2, wherein, when the
respective file system object existing in the second file
system is a directory, the apparatus is configured to create a
respective associated directory as virtualized file system
object in the first file system.

4. The apparatus according to claim 2, wherein, when the
respective file system object existing in the second file
system is a file, the apparatus is configured to create a
respective associated external link object as virtualized file
system object in the first file system.

5. The apparatus according to claim 2, wherein the
apparatus is configured to update metadata of created vir-
tualized file system objects in the first file system based on
metadata of the respective associated file system object
existing in the second file system.

6. The apparatus according to claim 2, wherein the
apparatus is configured to change, upon creation of a first
child file system object of the first parent directory including
its metadata as virtualized file system object in the first file
system, a second status of the respective first child file
system object of the first parent directory to indicate that the
of the respective first child file system object has been
virtualized, and the apparatus is configured to change the
first status of the first parent directory of the first structure
information of the first file system based on the second status
of the one or more first child file system objects of the first
parent directory in the first structure information of the first
file system.

7. The apparatus according to claim 6, wherein the
apparatus is configured to change the first status of the first
parent directory of the first structure information of the first
file system to indicate that the first parent directory is
complete when the second status of each first child file
system object of the first parent directory indicates that the
respective first child file system object has been virtualized.

8. The apparatus according to claim 1, wherein metadata
of the first parent directory of the first structure information
of the first file system indicates a fake link count being
indicative of a number of the second child directories of the
associated second parent directory existing in the second file
system.

9. The apparatus according to claim 8, wherein the
apparatus is further configured to decrement the fake link
count of the metadata of the first parent directory of the first
structure information of the first file system upon creating a
first child directory of the first parent directory of the first
structure information of the first file system being associated
with a second child directory of the associated second parent
directory existing in the second file system.

10. The apparatus according to claim 8, wherein metadata
of the first parent directory of the first structure information
of the first file system further indicates a real link count

US 9,460,111 B2

43

being indicative of a number of the first child directories of
the first parent directory of the first structure information of
the first file system.

11. The apparatus according to claim 10, wherein the
apparatus is configured, when receiving a request to return
a link count of the first parent directory of the first structure
information of the first file system, to return the link count
of the first parent directory being determined on the basis of
the fake link count and the real link count of the metadata of
the first parent directory of the first structure information of
the first file system.

12. The apparatus according to claim 1, wherein the
apparatus is configured to manage virtualization manage-
ment information being indicative of virtualized file system
objects existing in the first file system.

13. The apparatus according to claim 12, wherein the
virtualization management information is, for each virtual-
ized file system object existing in the first file system,
indicative of at least one of a first status and a second status.

14. A data storage system comprising an apparatus and
another apparatus, the apparatus being connectable to a
computer and the other apparatus,

the apparatus being configured to manage a first file

system and to create a first structure information of the
first file system linking between at least one first parent
directory and one or more first child file system objects
of the first parent directory based on a second structure
information of a second file system received from the
other apparatus, the second structure information link-
ing between at least one second parent directory and
one or more second child file system objects of the
second parent directory existing in the second file
system managed by the other apparatus, the second
parent directory being associated with the first parent
directory and the one or more second child file system
objects of the second parent directory being associated
with the one or more second child file system objects of
the second parent directory,

wherein, during creating the first structure information of

the first file system, the apparatus is further configured
to change a first status of the at least one first parent
directory of the first structure information of the first
file system based on creating metadata of the one or
more first child file system objects of the first parent
directory in the first structure information of the first
file system, the metadata of the one or more first child
file system objects of the first parent directory being
created based on metadata of the respective associated
one or more second child file system objects of the
second parent directory of the second structure infor-
mation of the second file system received from the
other apparatus.

15. The data storage system according to claim 14,
wherein, for creating the first structure information of the
first file system, the apparatus is configured to create virtu-
alized file system objects in the first file system, each
virtualized file system object of the first file system being
associated with a respective file system object existing in the
second file system.

16. The data storage system according to claim 15,
wherein, when the respective file system object existing in
the second file system is a directory, the apparatus is
configured to create a respective associated directory as
virtualized file system object in the first file system.

17. The data storage system according to claim 15,
wherein, when the respective file system object existing in
the second file system is a file, the apparatus is configured

10

15

20

25

30

35

40

45

50

55

60

65

44

to create a respective associated external link object as
virtualized file system object in the first file system.

18. The data storage system according to claim 15,
wherein the apparatus is configured to update metadata of
created virtualized file system objects in the first file system
based on metadata of the respective associated file system
object existing in the second file system.

19. The data storage system according to claim 15,
wherein the apparatus is configured to change, upon creation
of a first child file system object of the first parent directory
including its metadata as virtualized file system object in the
first file system, a second status of the respective first child
file system object of the first parent directory to indicate that
the of the respective first child file system object has been
virtualized, and the apparatus is configured to change the
first status of the first parent directory of the first structure
information of the first file system based on the second status
of the one or more first child file system objects of the first
parent directory in the first structure information of the first
file system.

20. The data storage system according to claim 18,
wherein the apparatus is configured to change the first status
of the first parent directory of the first structure information
of the first file system to indicate that the first parent
directory is complete when the second status of each first
child file system object of the first parent directory indicates
that the respective first child file system object has been
virtualized.

21. The data storage system according to claim 14,
wherein metadata of the first parent directory of the first
structure information of the first file system indicates a fake
link count being indicative of a number of the second child
directories of the associated second parent directory existing
in the second file system.

22. The data storage system according to claim 21,
wherein the apparatus is further configured to decrement the
fake link count of the metadata of the first parent directory
of' the first structure information of the first file system upon
creating a first child directory of the first parent directory of
the first structure information of the first file system being
associated with a second child directory of the associated
second parent directory existing in the second file system.

23. The data storage system according to claim 21,
wherein metadata of the first parent directory of the first
structure information of the first file system further indicates
a real link count being indicative of a number of the first
child directories of the first parent directory of the first
structure information of the first file system.

24. The data storage system according to claim 23,
wherein the apparatus is configured, when receiving a
request to return a link count of the first parent directory of
the first structure information of the first file system, to
return the link count of the first parent directory being
determined on the basis of the fake link count and the real
link count of the metadata of the first parent directory of the
first structure information of the first file system.

25. The data storage system according to claim 14,
wherein the apparatus is configured to manage virtualization
management information being indicative of virtualized file
system objects existing in the first file system.

26. The data storage system according to claim 25,
wherein the virtualization management information is, for
each virtualized file system object existing in the first file
system, indicative of at least one of a first status and a second
status.

27. A non-transitory computer readable storage medium
including computer program code adapted to cause an

US 9,460,111 B2

45

apparatus, which is connectable to a computer and another
apparatus and managing a first file system, to execute the
steps of:

creating a first structure information of the first file system

linking between at least one first parent directory and
one or more first child file system objects of the first
parent directory based on a second structure informa-
tion of a second file system received from the other
apparatus, the second structure information linking
between at least one second parent directory and one or
more second child file system objects of the second
parent directory existing in the second file system
managed by the other apparatus, the second parent
directory being associated with the first parent directory
and the one or more second child file system objects of
the second parent directory being associated with the
one or more second child file system objects of the
second parent directory, and

changing, during creating the first structure information of

the first file system, a first status of the at least one first
parent directory of the first structure information of the
first file system based on creating metadata of the one
or more first child file system objects of the first parent
directory of the first structure information of the first
file system, the metadata of the one or more first child
file system objects of the first parent directory being
created based on metadata of the respective associated
one or more second child file system objects of the
second parent directory of the second structure infor-
mation of the second file system received from the
other apparatus.

28. The non-transitory computer readable storage medium
according to claim 27, wherein, for creating the first struc-
ture information of the first file system, the code causes the
apparatus to create virtualized file system objects in the first
file system, each virtualized file system object of the first file
system being associated with a respective file system object
existing in the second file system.

29. The non-transitory computer readable storage medium
according to claim 28, wherein, when the respective file
system object existing in the second file system is a direc-
tory, the code causes the apparatus to create a respective
associated directory as virtualized file system object in the
first file system.

30. The non-transitory computer readable storage medium
according to claim 28, wherein, when the respective file
system object existing in the second file system is a file, the
code causes the apparatus to create a respective associated
external link object as virtualized file system object in the
first file system.

31. The non-transitory computer readable storage medium
according to claim 28, wherein the code causes the apparatus
to update metadata of created virtualized file system objects
in the first file system based on metadata of the respective
associated file system object existing in the second file
system.

32. The non-transitory computer readable storage medium
according to claim 28, wherein the code causes the apparatus
to change, upon creation of a first child file system object of
the first parent directory including its metadata as virtualized

40

45

50

55

46

file system object in the first file system, a second status of
the respective first child file system object of the first parent
directory to indicate that the of the respective first child file
system object has been virtualized, and the code causes the
apparatus to change the first status of the first parent direc-
tory of the first structure information of the first file system
based on the second status of the one or more first child file
system objects of the first parent directory in the first
structure information of the first file system.

33. The non-transitory computer readable storage medium
according to claim 32, wherein the code causes the apparatus
to change the first status of the first parent directory of the
first structure information of the first file system to indicate
that the first parent directory is complete when the second
status of each first child file system object of the first parent
directory indicates that the respective first child file system
object has been virtualized.

34. The non-transitory computer readable storage medium
according to claim 27, wherein metadata of the first parent
directory of the first structure information of the first file
system indicates a fake link count being indicative of a
number of the second child directories of the associated
second parent directory existing in the second file system.

35. The non-transitory computer readable storage medium
according to claim 34, wherein the code causes the apparatus
to decrement the fake link count of the metadata of the first
parent directory of the first structure information of the first
file system upon creating a first child directory of the first
parent directory of the first structure information of the first
file system being associated with a second child directory of
the associated second parent directory existing in the second
file system.

36. The non-transitory computer readable storage medium
according to claim 34, wherein metadata of the first parent
directory of the first structure information of the first file
system further indicates a real link count being indicative of
a number of the first child directories of the first parent
directory of the first structure information of the first file
system.

37. The non-transitory computer readable storage medium
according to claim 36, wherein the code causes the appara-
tus, when receiving a request to return a link count of the
first parent directory of the first structure information of the
first file system, to return the link count of the first parent
directory being determined on the basis of the fake link
count and the real link count of the metadata of the first
parent directory of the first structure information of the first
file system.

38. The non-transitory computer readable storage medium
according to at least one of claims 27, wherein the code
causes the apparatus to manage virtualization management
information being indicative of virtualized file system
objects existing in the first file system.

39. The non-transitory computer readable storage medium
according to claim 38, wherein the virtualization manage-
ment information is, for each virtualized file system object
existing in the first file system, indicative of at least one of
a first status and a second status.

#* #* #* #* #*

